File size: 5,334 Bytes
391ecac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce54ee1
 
391ecac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import streamlit as st
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import transforms
from PIL import Image
import os
import time

########################
#     MODEL DEFINITION
########################
class MelanomaModel(nn.Module):
    def __init__(self, out_size, dropout_prob=0.5):
        super(MelanomaModel, self).__init__()
        from efficientnet_pytorch import EfficientNet
        self.efficient_net = EfficientNet.from_pretrained('efficientnet-b0')
        # Remove the original FC layer
        self.efficient_net._fc = nn.Identity()
        
        self.fc1 = nn.Linear(1280, 512)
        self.fc2 = nn.Linear(512, 256)
        self.fc3 = nn.Linear(256, out_size)
        
        self.dropout = nn.Dropout(dropout_prob)

    def forward(self, x):
        x = self.efficient_net(x)
        x = x.view(x.size(0), -1)
        x = F.relu(self.fc1(x))
        x = self.dropout(x)
        x = F.relu(self.fc2(x))
        x = self.dropout(x)
        x = self.fc3(x)
        return x


########################
#     DIAGNOSIS MAP
########################
DIAGNOSIS_MAP = {
    0: 'Melanoma',
    1: 'Melanocytic nevus',
    2: 'Basal cell carcinoma',
    3: 'Actinic keratosis',
    4: 'Benign keratosis',
    5: 'Dermatofibroma',
    6: 'Vascular lesion',
    7: 'Squamous cell carcinoma',
    8: 'Unknown'
}

########################
#   LOAD MODEL FUNCTION
########################
@st.cache_resource
def load_model():
    """
    Loads the model checkpoint.
    Using weights_only=False (if you trust the .pth file).
    If you prefer a more secure approach, re-save your checkpoint 
    to only contain raw state_dict and set weights_only=True.
    """
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model = MelanomaModel(out_size=9)

    # Path to your model file
    # model_path = os.path.join("model", "multi_weight.pth")
    model_path = "multi_weight.pth"

    # If you trust the checkpoint file, set weights_only=False
    checkpoint = torch.load(
        model_path, 
        map_location=device,
        weights_only=False  # if you have a purely raw state_dict, you can use True
    )
    model.load_state_dict(checkpoint["model_state_dict"])

    model.to(device)
    model.eval()
    
    return model, device

########################
#   IMAGE TRANSFORM
########################
transform = transforms.Compose([
    transforms.Resize(256),
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    transforms.Normalize([0.485, 0.456, 0.406],
                         [0.229, 0.224, 0.225])
])

########################
#   PREDICTION UTILS
########################
def predict_skin_lesion(img: Image.Image, model: nn.Module, device: torch.device):
    # Transform and move image to device
    img_tensor = transform(img).unsqueeze(0).to(device)
    
    with torch.no_grad():
        outputs = model(img_tensor)
        probs = F.softmax(outputs, dim=1)
        top_probs, top_idxs = torch.topk(probs, 3, dim=1)  # top 3 predictions

    predictions = []
    for prob, idx in zip(top_probs[0], top_idxs[0]):
        label = DIAGNOSIS_MAP.get(idx.item(), "Unknown")
        confidence = prob.item() * 100
        predictions.append((label, confidence))

    return predictions

########################
#   PAGE CONFIG & STYLE
########################
st.set_page_config(
    page_title="Skin Lesion Classifier",
    page_icon=":microscope:",
    layout="centered",
    initial_sidebar_state="expanded"
)

def set_background_color():
    st.markdown(
        """
        <style>
        .stApp {
            background-color: #FDEAE0;  /* A pale peach/light skin tone */
        }
        </style>
        """,
        unsafe_allow_html=True
    )

set_background_color()

########################
#   STREAMLIT APP
########################
def main():
    st.title("Skin Lesion Classifier")
    st.write("Upload an image of a skin lesion to see the top-3 predicted diagnoses.")

    # Create a stylish sidebar
    st.sidebar.title("Possible Diagnoses")
    st.sidebar.markdown("Here are the categories the model can distinguish:")
    for idx, diag in DIAGNOSIS_MAP.items():
        st.sidebar.markdown(f"- **{diag}**")

    # Add the names to the sidebar in a new section
    st.sidebar.title("Team Members")
    st.sidebar.markdown(
        """
        - **PRATHUSH MON**
        - **PRATIK J**
        - **RAYAN NASAR**
        - **R HARIMURALI**
        - **WASEEM AHAMMED**
        """
    )

    # Load the model once (cached)
    model, device = load_model()

    # File uploader
    uploaded_file = st.file_uploader("Choose an image...", type=["png", "jpg", "jpeg"])

    if uploaded_file is not None:
        # Display the image
        image = Image.open(uploaded_file)
        st.image(image, caption="Uploaded Image", use_column_width=True)

        # Predict on button click
        if st.button("Classify"):
            with st.spinner("Analyzing..."):
                time.sleep(3)  # 3-second spinner
                results = predict_skin_lesion(image, model, device)
            
            st.subheader("Top-3 Predictions")
            for i, (diagnosis, confidence) in enumerate(results, start=1):
                st.write(f"{i}. **{diagnosis}**: {confidence:.2f}%")

if __name__ == "__main__":
    main()