Spaces:
Running
Running
update_front (#37)
Browse files- Modify UI (49ba0274bc51d342dac415d3ecb0cfc5141c9b10)
- app.py +255 -13
- requirements.txt +3 -1
app.py
CHANGED
|
@@ -14,6 +14,7 @@ if not RESULT_DIR:
|
|
| 14 |
import gradio as gr
|
| 15 |
import pandas as pd
|
| 16 |
from datasets import load_dataset
|
|
|
|
| 17 |
|
| 18 |
|
| 19 |
def f2(x):
|
|
@@ -23,6 +24,166 @@ def f2(x):
|
|
| 23 |
return x
|
| 24 |
|
| 25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
def json_to_row(path: str, metrics: dict) -> dict:
|
| 27 |
model_name = metrics.get("model_name")
|
| 28 |
if not model_name:
|
|
@@ -63,7 +224,6 @@ def json_to_row(path: str, metrics: dict) -> dict:
|
|
| 63 |
"Model type": model_type,
|
| 64 |
"Precision": precision,
|
| 65 |
"E2E(s)": f2(e2e_s),
|
| 66 |
-
"Batch size": batch_size,
|
| 67 |
"GPU": gpu_type,
|
| 68 |
"Accuracy(%)": pct(acc),
|
| 69 |
"Cost($)": cost,
|
|
@@ -75,6 +235,7 @@ def json_to_row(path: str, metrics: dict) -> dict:
|
|
| 75 |
"Decoding<br>S-MFU(%)": pct(metrics.get("decoding_smfu")),
|
| 76 |
"TTFT(s)": f2(metrics.get("ttft")),
|
| 77 |
"TPOT(s)": f2(metrics.get("tpot")),
|
|
|
|
| 78 |
}
|
| 79 |
return row
|
| 80 |
|
|
@@ -219,7 +380,7 @@ def load_from_dir(
|
|
| 219 |
|
| 220 |
if df.empty:
|
| 221 |
empty_html = "<p>No records found.</p>"
|
| 222 |
-
return empty_html
|
| 223 |
|
| 224 |
df = df.fillna("-")
|
| 225 |
raw_models = set()
|
|
@@ -244,8 +405,14 @@ def load_from_dir(
|
|
| 244 |
links.append(str(name))
|
| 245 |
models_str = ", ".join(links)
|
| 246 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 247 |
table_html = f'<div class="table-container">{df.to_html(escape=False, index=False, classes="metrics-table")}</div>'
|
| 248 |
-
|
|
|
|
|
|
|
| 249 |
|
| 250 |
|
| 251 |
def auto_refresh_from_dir(
|
|
@@ -267,6 +434,38 @@ def auto_refresh_from_dir(
|
|
| 267 |
)
|
| 268 |
|
| 269 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 270 |
# Gradio UI
|
| 271 |
|
| 272 |
def build_app() -> gr.Blocks:
|
|
@@ -275,6 +474,16 @@ def build_app() -> gr.Blocks:
|
|
| 275 |
body {
|
| 276 |
background-color: #f5f7fa !important;
|
| 277 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 278 |
|
| 279 |
/* The outer Group container */
|
| 280 |
.search-box {
|
|
@@ -571,7 +780,7 @@ def build_app() -> gr.Blocks:
|
|
| 571 |
value=["bfloat16", "fp8"],
|
| 572 |
)
|
| 573 |
|
| 574 |
-
with gr.Accordion("π About Tasks & Metrics", open=
|
| 575 |
gr.Markdown(
|
| 576 |
"### Tasks\n"
|
| 577 |
"- **GSM8K** β Mathematics Problem-Solving ([paper](https://arxiv.org/abs/2110-14168))\n"
|
|
@@ -591,48 +800,81 @@ def build_app() -> gr.Blocks:
|
|
| 591 |
elem_classes="info-section"
|
| 592 |
)
|
| 593 |
|
| 594 |
-
# Right side - Table
|
| 595 |
with gr.Column(scale=5):
|
| 596 |
leaderboard_output = gr.HTML(label="π Results")
|
| 597 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 598 |
demo.load(
|
| 599 |
fn=auto_refresh_from_dir,
|
| 600 |
inputs=[dir_path, task_filter, framework_filter, model_type_filter, precision_filter, search_input],
|
| 601 |
-
outputs=[leaderboard_output],
|
| 602 |
)
|
| 603 |
|
| 604 |
search_input.change(
|
| 605 |
fn=load_from_dir,
|
| 606 |
inputs=[dir_path, task_filter, framework_filter, model_type_filter, precision_filter, search_input],
|
| 607 |
-
outputs=[leaderboard_output],
|
| 608 |
)
|
| 609 |
|
| 610 |
task_filter.change(
|
| 611 |
fn=load_from_dir,
|
| 612 |
inputs=[dir_path, task_filter, framework_filter, model_type_filter, precision_filter, search_input],
|
| 613 |
-
outputs=[leaderboard_output],
|
| 614 |
)
|
| 615 |
framework_filter.change(
|
| 616 |
fn=load_from_dir,
|
| 617 |
inputs=[dir_path, task_filter, framework_filter, model_type_filter, precision_filter, search_input],
|
| 618 |
-
outputs=[leaderboard_output],
|
| 619 |
)
|
| 620 |
model_type_filter.change(
|
| 621 |
fn=load_from_dir,
|
| 622 |
inputs=[dir_path, task_filter, framework_filter, model_type_filter, precision_filter, search_input],
|
| 623 |
-
outputs=[leaderboard_output],
|
| 624 |
)
|
| 625 |
precision_filter.change(
|
| 626 |
fn=load_from_dir,
|
| 627 |
inputs=[dir_path, task_filter, framework_filter, model_type_filter, precision_filter, search_input],
|
| 628 |
-
outputs=[leaderboard_output],
|
| 629 |
)
|
| 630 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 631 |
timer = gr.Timer(60.0)
|
| 632 |
timer.tick(
|
| 633 |
fn=auto_refresh_from_dir,
|
| 634 |
inputs=[dir_path, task_filter, framework_filter, model_type_filter, precision_filter, search_input],
|
| 635 |
-
outputs=[leaderboard_output],
|
| 636 |
)
|
| 637 |
|
| 638 |
return demo
|
|
|
|
| 14 |
import gradio as gr
|
| 15 |
import pandas as pd
|
| 16 |
from datasets import load_dataset
|
| 17 |
+
import plotly.graph_objects as go
|
| 18 |
|
| 19 |
|
| 20 |
def f2(x):
|
|
|
|
| 24 |
return x
|
| 25 |
|
| 26 |
|
| 27 |
+
def normalize(val, vmin, vmax, baseline=20):
|
| 28 |
+
"""Normalize value to baseline-100 range."""
|
| 29 |
+
if vmax == vmin:
|
| 30 |
+
return baseline + 40
|
| 31 |
+
return baseline + (val - vmin) / (vmax - vmin) * (100 - baseline)
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def normalize_reversed(val, vmin, vmax, baseline=20):
|
| 35 |
+
"""Normalize value (reversed - lower is better) to baseline-100 range."""
|
| 36 |
+
if vmax == vmin:
|
| 37 |
+
return baseline + 40
|
| 38 |
+
return baseline + (vmax - val) / (vmax - vmin) * (100 - baseline)
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def normalize_cost(val, max_tick, baseline=20):
|
| 42 |
+
"""Normalize cost (lower is better)."""
|
| 43 |
+
if max_tick == 0:
|
| 44 |
+
return baseline + 40
|
| 45 |
+
return baseline + (max_tick - min(val, max_tick)) / max_tick * (100 - baseline)
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def generate_radar_plot(selected_rows_data: List[dict]) -> go.Figure:
|
| 49 |
+
"""Generate a CAP radar plot from selected rows."""
|
| 50 |
+
# Validation: max 3 rows, all same dataset
|
| 51 |
+
if not selected_rows_data or len(selected_rows_data) == 0:
|
| 52 |
+
fig = go.Figure()
|
| 53 |
+
fig.add_annotation(
|
| 54 |
+
text="Please select 1-3 rows from the table to generate radar plot",
|
| 55 |
+
xref="paper", yref="paper",
|
| 56 |
+
x=0.05, y=0.5, showarrow=False,
|
| 57 |
+
font=dict(size=16)
|
| 58 |
+
)
|
| 59 |
+
fig.update_layout(height=600, width=900)
|
| 60 |
+
return fig
|
| 61 |
+
if len(selected_rows_data) > 3:
|
| 62 |
+
fig = go.Figure()
|
| 63 |
+
fig.add_annotation(
|
| 64 |
+
text="Error: Please select no more than 3 rows!",
|
| 65 |
+
xref="paper", yref="paper",
|
| 66 |
+
x=0.5, y=0.5, showarrow=False,
|
| 67 |
+
font=dict(size=18, color="red")
|
| 68 |
+
)
|
| 69 |
+
fig.update_layout(height=600, width=900)
|
| 70 |
+
return fig
|
| 71 |
+
datasets = [row.get('Dataset', '') for row in selected_rows_data]
|
| 72 |
+
unique_datasets = set(datasets)
|
| 73 |
+
if len(unique_datasets) > 1:
|
| 74 |
+
fig = go.Figure()
|
| 75 |
+
fig.add_annotation(
|
| 76 |
+
text="Error: Please select rows from the same dataset!",
|
| 77 |
+
xref="paper", yref="paper",
|
| 78 |
+
x=0.5, y=0.5, showarrow=False,
|
| 79 |
+
font=dict(size=18, color="red")
|
| 80 |
+
)
|
| 81 |
+
fig.update_layout(height=600, width=900)
|
| 82 |
+
return fig
|
| 83 |
+
dataset_name = datasets[0] if datasets else "Unknown"
|
| 84 |
+
|
| 85 |
+
# Extract metrics from selected rows
|
| 86 |
+
data = {}
|
| 87 |
+
for row in selected_rows_data:
|
| 88 |
+
# Extract model name from HTML or use as-is
|
| 89 |
+
model_name = row.get('Model', 'Unknown')
|
| 90 |
+
if isinstance(model_name, str) and 'href' in model_name:
|
| 91 |
+
try:
|
| 92 |
+
model_name = model_name.split('>', 1)[1].split('<', 1)[0]
|
| 93 |
+
except:
|
| 94 |
+
pass
|
| 95 |
+
|
| 96 |
+
# Format legend name: extract name after "/" and add method
|
| 97 |
+
method = row.get('Method', '')
|
| 98 |
+
if isinstance(model_name, str) and '/' in model_name:
|
| 99 |
+
legend_name = model_name.split('/')[-1] # Get part after last /
|
| 100 |
+
else:
|
| 101 |
+
legend_name = str(model_name)
|
| 102 |
+
|
| 103 |
+
# Add method suffix
|
| 104 |
+
if method and method not in ['Unknown', '-', '']:
|
| 105 |
+
legend_name = f"{legend_name}-{method}"
|
| 106 |
+
|
| 107 |
+
# Get metrics
|
| 108 |
+
acc = row.get('Accuracy(%)', 0)
|
| 109 |
+
cost = row.get('Cost($)', 0)
|
| 110 |
+
throughput = row.get('Decoding T/s', 0)
|
| 111 |
+
|
| 112 |
+
# Convert to float if needed
|
| 113 |
+
try:
|
| 114 |
+
acc = float(acc) if acc not in [None, '-', ''] else 0
|
| 115 |
+
cost = float(cost) if cost not in [None, '-', ''] else 0
|
| 116 |
+
throughput = float(throughput) if throughput not in [None, '-', ''] else 0
|
| 117 |
+
except:
|
| 118 |
+
acc, cost, throughput = 0, 0, 0
|
| 119 |
+
|
| 120 |
+
data[legend_name] = {
|
| 121 |
+
'accuracy': acc / 100.0 if acc > 1 else acc, # Normalize to 0-1
|
| 122 |
+
'cost': cost,
|
| 123 |
+
'throughput': throughput
|
| 124 |
+
}
|
| 125 |
+
|
| 126 |
+
# Get min/max for normalization
|
| 127 |
+
throughputs = [v['throughput'] for v in data.values()]
|
| 128 |
+
costs = [v['cost'] for v in data.values()]
|
| 129 |
+
accs = [v['accuracy'] for v in data.values()]
|
| 130 |
+
|
| 131 |
+
tp_min, tp_max = (min(throughputs), max(throughputs)) if throughputs else (0, 1)
|
| 132 |
+
cost_max = max(costs) if costs else 1
|
| 133 |
+
acc_min, acc_max = (min(accs), 1.0) if accs else (0, 1)
|
| 134 |
+
|
| 135 |
+
baseline = 20
|
| 136 |
+
categories = ['Throughput (T/s)', 'Cost ($)', 'Accuracy', 'Throughput (T/s)']
|
| 137 |
+
|
| 138 |
+
fig = go.Figure()
|
| 139 |
+
|
| 140 |
+
for system, values in data.items():
|
| 141 |
+
raw_vals = [values['throughput'], values['cost'], values['accuracy']]
|
| 142 |
+
norm_vals = [
|
| 143 |
+
normalize(values['throughput'], tp_min, tp_max, baseline),
|
| 144 |
+
normalize_cost(values['cost'], cost_max, baseline),
|
| 145 |
+
normalize(values['accuracy'], acc_min, acc_max, baseline)
|
| 146 |
+
]
|
| 147 |
+
norm_vals += [norm_vals[0]] # Close the loop
|
| 148 |
+
|
| 149 |
+
hovertext = [
|
| 150 |
+
f"Throughput: {raw_vals[0]:.2f} T/s",
|
| 151 |
+
f"Cost: ${raw_vals[1]:.2f}",
|
| 152 |
+
f"Accuracy: {raw_vals[2]*100:.2f}%",
|
| 153 |
+
f"Throughput: {raw_vals[0]:.2f} T/s"
|
| 154 |
+
]
|
| 155 |
+
|
| 156 |
+
fig.add_trace(go.Scatterpolar(
|
| 157 |
+
r=norm_vals,
|
| 158 |
+
theta=categories,
|
| 159 |
+
fill='toself',
|
| 160 |
+
name=system,
|
| 161 |
+
text=hovertext,
|
| 162 |
+
hoverinfo='text+name',
|
| 163 |
+
line=dict(width=2)
|
| 164 |
+
))
|
| 165 |
+
|
| 166 |
+
fig.update_layout(
|
| 167 |
+
title=f"CAP Radar Plot: {dataset_name}",
|
| 168 |
+
polar=dict(
|
| 169 |
+
radialaxis=dict(visible=True, range=[0, 100], tickfont=dict(size=10)),
|
| 170 |
+
angularaxis=dict(
|
| 171 |
+
tickfont=dict(size=12),
|
| 172 |
+
rotation=30,
|
| 173 |
+
direction='clockwise'
|
| 174 |
+
),
|
| 175 |
+
),
|
| 176 |
+
legend=dict(orientation='h', yanchor='bottom', y=-0.2, xanchor='center', x=0.5),
|
| 177 |
+
margin=dict(t=100, b=120, l=100, r=1000),
|
| 178 |
+
height=700,
|
| 179 |
+
width=1500,
|
| 180 |
+
paper_bgcolor='white',
|
| 181 |
+
plot_bgcolor='white'
|
| 182 |
+
)
|
| 183 |
+
|
| 184 |
+
return fig
|
| 185 |
+
|
| 186 |
+
|
| 187 |
def json_to_row(path: str, metrics: dict) -> dict:
|
| 188 |
model_name = metrics.get("model_name")
|
| 189 |
if not model_name:
|
|
|
|
| 224 |
"Model type": model_type,
|
| 225 |
"Precision": precision,
|
| 226 |
"E2E(s)": f2(e2e_s),
|
|
|
|
| 227 |
"GPU": gpu_type,
|
| 228 |
"Accuracy(%)": pct(acc),
|
| 229 |
"Cost($)": cost,
|
|
|
|
| 235 |
"Decoding<br>S-MFU(%)": pct(metrics.get("decoding_smfu")),
|
| 236 |
"TTFT(s)": f2(metrics.get("ttft")),
|
| 237 |
"TPOT(s)": f2(metrics.get("tpot")),
|
| 238 |
+
"Batch size": batch_size, # moved to tail
|
| 239 |
}
|
| 240 |
return row
|
| 241 |
|
|
|
|
| 380 |
|
| 381 |
if df.empty:
|
| 382 |
empty_html = "<p>No records found.</p>"
|
| 383 |
+
return empty_html, []
|
| 384 |
|
| 385 |
df = df.fillna("-")
|
| 386 |
raw_models = set()
|
|
|
|
| 405 |
links.append(str(name))
|
| 406 |
models_str = ", ".join(links)
|
| 407 |
|
| 408 |
+
# Insert row number column at the beginning for easy reference
|
| 409 |
+
df.insert(0, 'Row #', range(len(df)))
|
| 410 |
+
|
| 411 |
+
# Create HTML table
|
| 412 |
table_html = f'<div class="table-container">{df.to_html(escape=False, index=False, classes="metrics-table")}</div>'
|
| 413 |
+
df_without_rownum = df.drop('Row #', axis=1)
|
| 414 |
+
df_dict = df_without_rownum.to_dict('records')
|
| 415 |
+
return table_html, df_dict
|
| 416 |
|
| 417 |
|
| 418 |
def auto_refresh_from_dir(
|
|
|
|
| 434 |
)
|
| 435 |
|
| 436 |
|
| 437 |
+
def update_radar_plot(df_data: list, selected_indices: list):
|
| 438 |
+
"""Update radar plot based on selected row indices."""
|
| 439 |
+
if not selected_indices or not df_data:
|
| 440 |
+
return generate_radar_plot([])
|
| 441 |
+
|
| 442 |
+
# Get selected rows (limit to 3)
|
| 443 |
+
selected_rows = [df_data[i] for i in selected_indices[:3] if i < len(df_data)]
|
| 444 |
+
return generate_radar_plot(selected_rows)
|
| 445 |
+
|
| 446 |
+
|
| 447 |
+
def parse_and_generate_plot(df_data: list, indices_str: str):
|
| 448 |
+
"""Parse comma-separated indices and generate radar plot."""
|
| 449 |
+
if not indices_str or not indices_str.strip():
|
| 450 |
+
return generate_radar_plot([])
|
| 451 |
+
|
| 452 |
+
try:
|
| 453 |
+
# Parse comma-separated indices
|
| 454 |
+
indices = [int(idx.strip()) for idx in indices_str.split(',') if idx.strip()]
|
| 455 |
+
# Limit to 3 rows
|
| 456 |
+
indices = indices[:3]
|
| 457 |
+
# Get selected rows
|
| 458 |
+
selected_rows = [df_data[i] for i in indices if 0 <= i < len(df_data)]
|
| 459 |
+
return generate_radar_plot(selected_rows)
|
| 460 |
+
except (ValueError, IndexError):
|
| 461 |
+
return generate_radar_plot([])
|
| 462 |
+
|
| 463 |
+
|
| 464 |
+
def on_table_select(df, evt: gr.SelectData):
|
| 465 |
+
"""Handle table row selection."""
|
| 466 |
+
return evt.index
|
| 467 |
+
|
| 468 |
+
|
| 469 |
# Gradio UI
|
| 470 |
|
| 471 |
def build_app() -> gr.Blocks:
|
|
|
|
| 474 |
body {
|
| 475 |
background-color: #f5f7fa !important;
|
| 476 |
}
|
| 477 |
+
|
| 478 |
+
/* Row number column styling */
|
| 479 |
+
.metrics-table th:first-child,
|
| 480 |
+
.metrics-table td:first-child {
|
| 481 |
+
width: 60px !important;
|
| 482 |
+
text-align: center !important;
|
| 483 |
+
padding: 8px !important;
|
| 484 |
+
font-weight: 600 !important;
|
| 485 |
+
background-color: #f0f0f0 !important;
|
| 486 |
+
}
|
| 487 |
|
| 488 |
/* The outer Group container */
|
| 489 |
.search-box {
|
|
|
|
| 780 |
value=["bfloat16", "fp8"],
|
| 781 |
)
|
| 782 |
|
| 783 |
+
with gr.Accordion("π About Tasks & Metrics", open=True):
|
| 784 |
gr.Markdown(
|
| 785 |
"### Tasks\n"
|
| 786 |
"- **GSM8K** β Mathematics Problem-Solving ([paper](https://arxiv.org/abs/2110-14168))\n"
|
|
|
|
| 800 |
elem_classes="info-section"
|
| 801 |
)
|
| 802 |
|
| 803 |
+
# Right side - Table with selection and Radar Plot below
|
| 804 |
with gr.Column(scale=5):
|
| 805 |
leaderboard_output = gr.HTML(label="π Results")
|
| 806 |
+
|
| 807 |
+
with gr.Group(elem_classes="filter-section"):
|
| 808 |
+
gr.Markdown("### π CAP Radar Plot")
|
| 809 |
+
gr.Markdown(
|
| 810 |
+
"**How to use:** Look at the 'Row #' column in the table above. "
|
| 811 |
+
"Enter up to 3 row numbers below (separated by commas) and click Generate."
|
| 812 |
+
)
|
| 813 |
+
|
| 814 |
+
with gr.Row():
|
| 815 |
+
row_indices_input = gr.Textbox(
|
| 816 |
+
label="Row Numbers to Compare",
|
| 817 |
+
placeholder="Example: 0,1,2",
|
| 818 |
+
elem_id="row_indices_input",
|
| 819 |
+
scale=3
|
| 820 |
+
)
|
| 821 |
+
generate_btn = gr.Button("π― Generate", variant="primary", scale=1, size="lg")
|
| 822 |
+
|
| 823 |
+
with gr.Row():
|
| 824 |
+
with gr.Column(scale=1):
|
| 825 |
+
pass
|
| 826 |
+
with gr.Column(scale=5):
|
| 827 |
+
radar_plot = gr.Plot(label="", value=generate_radar_plot([]))
|
| 828 |
+
with gr.Column(scale=1):
|
| 829 |
+
pass
|
| 830 |
+
|
| 831 |
+
df_data_state = gr.State([])
|
| 832 |
+
|
| 833 |
demo.load(
|
| 834 |
fn=auto_refresh_from_dir,
|
| 835 |
inputs=[dir_path, task_filter, framework_filter, model_type_filter, precision_filter, search_input],
|
| 836 |
+
outputs=[leaderboard_output, df_data_state],
|
| 837 |
)
|
| 838 |
|
| 839 |
search_input.change(
|
| 840 |
fn=load_from_dir,
|
| 841 |
inputs=[dir_path, task_filter, framework_filter, model_type_filter, precision_filter, search_input],
|
| 842 |
+
outputs=[leaderboard_output, df_data_state],
|
| 843 |
)
|
| 844 |
|
| 845 |
task_filter.change(
|
| 846 |
fn=load_from_dir,
|
| 847 |
inputs=[dir_path, task_filter, framework_filter, model_type_filter, precision_filter, search_input],
|
| 848 |
+
outputs=[leaderboard_output, df_data_state],
|
| 849 |
)
|
| 850 |
framework_filter.change(
|
| 851 |
fn=load_from_dir,
|
| 852 |
inputs=[dir_path, task_filter, framework_filter, model_type_filter, precision_filter, search_input],
|
| 853 |
+
outputs=[leaderboard_output, df_data_state],
|
| 854 |
)
|
| 855 |
model_type_filter.change(
|
| 856 |
fn=load_from_dir,
|
| 857 |
inputs=[dir_path, task_filter, framework_filter, model_type_filter, precision_filter, search_input],
|
| 858 |
+
outputs=[leaderboard_output, df_data_state],
|
| 859 |
)
|
| 860 |
precision_filter.change(
|
| 861 |
fn=load_from_dir,
|
| 862 |
inputs=[dir_path, task_filter, framework_filter, model_type_filter, precision_filter, search_input],
|
| 863 |
+
outputs=[leaderboard_output, df_data_state],
|
| 864 |
)
|
| 865 |
|
| 866 |
+
# Generate plot on button click
|
| 867 |
+
generate_btn.click(
|
| 868 |
+
fn=parse_and_generate_plot,
|
| 869 |
+
inputs=[df_data_state, row_indices_input],
|
| 870 |
+
outputs=[radar_plot]
|
| 871 |
+
)
|
| 872 |
+
|
| 873 |
timer = gr.Timer(60.0)
|
| 874 |
timer.tick(
|
| 875 |
fn=auto_refresh_from_dir,
|
| 876 |
inputs=[dir_path, task_filter, framework_filter, model_type_filter, precision_filter, search_input],
|
| 877 |
+
outputs=[leaderboard_output, df_data_state],
|
| 878 |
)
|
| 879 |
|
| 880 |
return demo
|
requirements.txt
CHANGED
|
@@ -1,4 +1,6 @@
|
|
| 1 |
gradio>=4.44.0
|
| 2 |
pandas
|
| 3 |
datasets
|
| 4 |
-
huggingface_hub<0.25.0
|
|
|
|
|
|
|
|
|
| 1 |
gradio>=4.44.0
|
| 2 |
pandas
|
| 3 |
datasets
|
| 4 |
+
huggingface_hub<0.25.0
|
| 5 |
+
plotly>=5.0.0
|
| 6 |
+
kaleido>=0.2.1
|