Spaces:
Runtime error
Runtime error
Tristan Thrush
commited on
Commit
·
5170076
1
Parent(s):
338a59f
added ability to not select a dataset
Browse files
app.py
CHANGED
|
@@ -40,6 +40,8 @@ def parse_metrics_rows(meta, only_verified=False):
|
|
| 40 |
if not isinstance(result, dict) or "dataset" not in result or "metrics" not in result or "type" not in result["dataset"]:
|
| 41 |
continue
|
| 42 |
dataset = result["dataset"]["type"]
|
|
|
|
|
|
|
| 43 |
row = {"dataset": dataset, "split": "-unspecified-", "config": "-unspecified-"}
|
| 44 |
if "split" in result["dataset"]:
|
| 45 |
row["split"] = result["dataset"]["split"]
|
|
@@ -147,7 +149,7 @@ task = st.sidebar.selectbox(
|
|
| 147 |
if task != "-any-":
|
| 148 |
dataframe = dataframe[dataframe.pipeline_tag == task]
|
| 149 |
|
| 150 |
-
selectable_datasets = sorted(list(set(dataframe.dataset.tolist())), key=lambda name: name.lower())
|
| 151 |
if "" in selectable_datasets:
|
| 152 |
selectable_datasets.remove("")
|
| 153 |
|
|
@@ -172,30 +174,37 @@ dataframe = dataframe[dataframe.only_verified == only_verified_results]
|
|
| 172 |
|
| 173 |
st.experimental_set_query_params(**{"dataset": [dataset]})
|
| 174 |
|
| 175 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
dataset_df = dataset_df.dropna(axis="columns", how="all")
|
| 177 |
|
| 178 |
if len(dataset_df) > 0:
|
| 179 |
|
| 180 |
selectable_configs = list(set(dataset_df["config"]))
|
| 181 |
-
config = st.sidebar.selectbox(
|
| 182 |
-
"Config",
|
| 183 |
-
selectable_configs,
|
| 184 |
-
help="Filter the results on the current leaderboard by the dataset config. Self-reported results might not report the config, which is why \"-unspecified-\" is an option."
|
| 185 |
-
)
|
| 186 |
-
dataset_df = dataset_df[dataset_df.config == config]
|
| 187 |
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
dataset_df = dataset_df.dropna(thresh=2) # Want at least two non-na values (one for model_id and one for a metric).
|
| 200 |
|
| 201 |
sorting_metric = st.sidebar.radio(
|
|
@@ -213,19 +222,38 @@ if len(dataset_df) > 0:
|
|
| 213 |
)
|
| 214 |
|
| 215 |
st.markdown(
|
| 216 |
-
"
|
| 217 |
)
|
| 218 |
|
| 219 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 220 |
cols = dataset_df.columns.tolist()
|
| 221 |
cols.remove(sorting_metric)
|
| 222 |
-
|
|
|
|
| 223 |
dataset_df = dataset_df[cols]
|
| 224 |
|
| 225 |
# Sort the leaderboard, giving the sorting metric highest priority and then ordering by other metrics in the case of equal values.
|
| 226 |
-
dataset_df = dataset_df.sort_values(by=cols[
|
| 227 |
dataset_df = dataset_df.replace(np.nan, '-')
|
| 228 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 229 |
# Make the leaderboard
|
| 230 |
gb = GridOptionsBuilder.from_dataframe(dataset_df)
|
| 231 |
gb.configure_default_column(sortable=False)
|
|
@@ -233,6 +261,11 @@ if len(dataset_df) > 0:
|
|
| 233 |
"model_id",
|
| 234 |
cellRenderer=JsCode('''function(params) {return '<a target="_blank" href="https://huggingface.co/'+params.value+'">'+params.value+'</a>'}'''),
|
| 235 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 236 |
for name in selectable_metrics:
|
| 237 |
gb.configure_column(name, type=["numericColumn","numberColumnFilter","customNumericFormat"], precision=4, aggFunc='sum')
|
| 238 |
|
|
|
|
| 40 |
if not isinstance(result, dict) or "dataset" not in result or "metrics" not in result or "type" not in result["dataset"]:
|
| 41 |
continue
|
| 42 |
dataset = result["dataset"]["type"]
|
| 43 |
+
if dataset == "":
|
| 44 |
+
continue
|
| 45 |
row = {"dataset": dataset, "split": "-unspecified-", "config": "-unspecified-"}
|
| 46 |
if "split" in result["dataset"]:
|
| 47 |
row["split"] = result["dataset"]["split"]
|
|
|
|
| 149 |
if task != "-any-":
|
| 150 |
dataframe = dataframe[dataframe.pipeline_tag == task]
|
| 151 |
|
| 152 |
+
selectable_datasets = ["-any-"] + sorted(list(set(dataframe.dataset.tolist())), key=lambda name: name.lower())
|
| 153 |
if "" in selectable_datasets:
|
| 154 |
selectable_datasets.remove("")
|
| 155 |
|
|
|
|
| 174 |
|
| 175 |
st.experimental_set_query_params(**{"dataset": [dataset]})
|
| 176 |
|
| 177 |
+
if dataset != "-any-":
|
| 178 |
+
dataset_df = dataframe[dataframe.dataset == dataset]
|
| 179 |
+
else:
|
| 180 |
+
dataset_df = dataframe
|
| 181 |
+
|
| 182 |
dataset_df = dataset_df.dropna(axis="columns", how="all")
|
| 183 |
|
| 184 |
if len(dataset_df) > 0:
|
| 185 |
|
| 186 |
selectable_configs = list(set(dataset_df["config"]))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
|
| 188 |
+
if dataset != "-any-":
|
| 189 |
+
config = st.sidebar.selectbox(
|
| 190 |
+
"Config",
|
| 191 |
+
selectable_configs,
|
| 192 |
+
help="Filter the results on the current leaderboard by the dataset config. Self-reported results might not report the config, which is why \"-unspecified-\" is an option."
|
| 193 |
+
)
|
| 194 |
+
dataset_df = dataset_df[dataset_df.config == config]
|
| 195 |
+
|
| 196 |
+
selectable_splits = list(set(dataset_df["split"]))
|
| 197 |
+
split = st.sidebar.selectbox(
|
| 198 |
+
"Split",
|
| 199 |
+
selectable_splits,
|
| 200 |
+
help="Filter the results on the current leaderboard by the dataset split. Self-reported results might not report the split, which is why \"-unspecified-\" is an option."
|
| 201 |
+
)
|
| 202 |
+
dataset_df = dataset_df[dataset_df.split == split]
|
| 203 |
+
|
| 204 |
+
not_selectable_metrics = ["model_id", "dataset", "split", "config", "pipeline_tag", "only_verified"]
|
| 205 |
+
selectable_metrics = list(filter(lambda column: column not in not_selectable_metrics, dataset_df.columns))
|
| 206 |
+
|
| 207 |
+
dataset_df = dataset_df.filter(["model_id"] + (["dataset"] if dataset == "-any-" else []) + selectable_metrics)
|
| 208 |
dataset_df = dataset_df.dropna(thresh=2) # Want at least two non-na values (one for model_id and one for a metric).
|
| 209 |
|
| 210 |
sorting_metric = st.sidebar.radio(
|
|
|
|
| 222 |
)
|
| 223 |
|
| 224 |
st.markdown(
|
| 225 |
+
"If you do not see your self-reported results here, ensure that your results are in the expected range for all metrics. E.g., accuracy is 0-1, not 0-100."
|
| 226 |
)
|
| 227 |
|
| 228 |
+
if dataset == "-any-":
|
| 229 |
+
st.info(
|
| 230 |
+
"Note: you haven't chosen a dataset, so the leaderboard is showing the best scoring model for each dataset."
|
| 231 |
+
)
|
| 232 |
+
|
| 233 |
+
# Make the default metric appear right after model names and dataset names
|
| 234 |
cols = dataset_df.columns.tolist()
|
| 235 |
cols.remove(sorting_metric)
|
| 236 |
+
sorting_metric_index = 1 if dataset != "-any-" else 2
|
| 237 |
+
cols = cols[:sorting_metric_index] + [sorting_metric] + cols[sorting_metric_index:]
|
| 238 |
dataset_df = dataset_df[cols]
|
| 239 |
|
| 240 |
# Sort the leaderboard, giving the sorting metric highest priority and then ordering by other metrics in the case of equal values.
|
| 241 |
+
dataset_df = dataset_df.sort_values(by=cols[sorting_metric_index:], ascending=[metric in ascending_metrics for metric in cols[sorting_metric_index:]])
|
| 242 |
dataset_df = dataset_df.replace(np.nan, '-')
|
| 243 |
|
| 244 |
+
# If dataset is "-any-", only show the best model for each dataset. Otherwise
|
| 245 |
+
# The leaderboard is way too long and doesn't give the users a feel for all of
|
| 246 |
+
# the datasets available for a task.
|
| 247 |
+
if dataset == "-any-":
|
| 248 |
+
filtered_dataset_df_dict = {column: [] for column in dataset_df.columns}
|
| 249 |
+
seen_datasets = set()
|
| 250 |
+
for _, row in dataset_df.iterrows():
|
| 251 |
+
if row["dataset"] not in seen_datasets:
|
| 252 |
+
for column in dataset_df.columns:
|
| 253 |
+
filtered_dataset_df_dict[column].append(row[column])
|
| 254 |
+
seen_datasets.add(row["dataset"])
|
| 255 |
+
dataset_df = pd.DataFrame(filtered_dataset_df_dict)
|
| 256 |
+
|
| 257 |
# Make the leaderboard
|
| 258 |
gb = GridOptionsBuilder.from_dataframe(dataset_df)
|
| 259 |
gb.configure_default_column(sortable=False)
|
|
|
|
| 261 |
"model_id",
|
| 262 |
cellRenderer=JsCode('''function(params) {return '<a target="_blank" href="https://huggingface.co/'+params.value+'">'+params.value+'</a>'}'''),
|
| 263 |
)
|
| 264 |
+
if dataset == "-any-":
|
| 265 |
+
gb.configure_column(
|
| 266 |
+
"dataset",
|
| 267 |
+
cellRenderer=JsCode('''function(params) {return '<a target="_blank" href="https://huggingface.co/spaces/autoevaluate/leaderboards?dataset='+params.value+'">'+params.value+'</a>'}'''),
|
| 268 |
+
)
|
| 269 |
for name in selectable_metrics:
|
| 270 |
gb.configure_column(name, type=["numericColumn","numberColumnFilter","customNumericFormat"], precision=4, aggFunc='sum')
|
| 271 |
|