Spaces:
Runtime error
Runtime error
Tristan Thrush
commited on
Commit
·
80f2297
1
Parent(s):
4dd611a
fixed cuttoff issue for wide leaderboards, made leaderboard data updating asynchronous, made streamlit set the url to match the selected dataset
Browse files- app.py +57 -52
- requirements.txt +2 -1
app.py
CHANGED
|
@@ -1,4 +1,3 @@
|
|
| 1 |
-
import requests
|
| 2 |
import pandas as pd
|
| 3 |
from tqdm.auto import tqdm
|
| 4 |
import streamlit as st
|
|
@@ -6,17 +5,9 @@ from huggingface_hub import HfApi, hf_hub_download
|
|
| 6 |
from huggingface_hub.repocard import metadata_load
|
| 7 |
from ascending_metrics import ascending_metrics
|
| 8 |
import numpy as np
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
link = "https://huggingface.co/" + model_name
|
| 13 |
-
return f'<a target="_blank" href="{link}">{model_name}</a>'
|
| 14 |
-
|
| 15 |
-
def make_bold(value):
|
| 16 |
-
return f'<b>{value}</b>'
|
| 17 |
-
|
| 18 |
-
def make_string(value):
|
| 19 |
-
return str(value)
|
| 20 |
|
| 21 |
|
| 22 |
def get_model_ids():
|
|
@@ -71,24 +62,42 @@ def parse_metrics_rows(meta):
|
|
| 71 |
row[type] = value
|
| 72 |
yield row
|
| 73 |
|
|
|
|
|
|
|
| 74 |
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
if meta is None:
|
| 82 |
-
continue
|
| 83 |
-
for row in parse_metrics_rows(meta):
|
| 84 |
-
if row is None:
|
| 85 |
continue
|
| 86 |
-
row
|
| 87 |
-
|
| 88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
|
| 90 |
-
|
| 91 |
-
dataframe = get_data()
|
| 92 |
selectable_datasets = list(set(dataframe.dataset.tolist()))
|
| 93 |
|
| 94 |
st.markdown("# 🤗 Leaderboards")
|
|
@@ -104,19 +113,20 @@ dataset = st.sidebar.selectbox(
|
|
| 104 |
selectable_datasets,
|
| 105 |
index=selectable_datasets.index(default_dataset),
|
| 106 |
)
|
|
|
|
| 107 |
|
| 108 |
dataset_df = dataframe[dataframe.dataset == dataset]
|
| 109 |
dataset_df = dataset_df.dropna(axis="columns", how="all")
|
| 110 |
|
| 111 |
selectable_metrics = list(filter(lambda column: column not in ("model_id", "dataset"), dataset_df.columns))
|
| 112 |
-
|
| 113 |
-
"
|
| 114 |
selectable_metrics,
|
| 115 |
)
|
| 116 |
|
| 117 |
dataset_df = dataset_df.filter(["model_id"] + selectable_metrics)
|
| 118 |
dataset_df = dataset_df.dropna(thresh=2) # Want at least two non-na values (one for model_id and one for a metric).
|
| 119 |
-
dataset_df = dataset_df.sort_values(by=
|
| 120 |
dataset_df = dataset_df.replace(np.nan, '-')
|
| 121 |
|
| 122 |
st.markdown(
|
|
@@ -127,30 +137,25 @@ st.markdown(
|
|
| 127 |
"Want to beat the leaderboard? Don't see your model here? Simply request an automatic evaluation [here](https://huggingface.co/spaces/autoevaluate/autoevaluate)."
|
| 128 |
)
|
| 129 |
|
| 130 |
-
#
|
| 131 |
-
dataset_df = dataset_df.reset_index(drop=True)
|
| 132 |
-
dataset_df.index += 1
|
| 133 |
-
|
| 134 |
-
# turn the model ids into clickable links
|
| 135 |
-
dataset_df["model_id"] = dataset_df["model_id"].apply(make_clickable)
|
| 136 |
-
dataset_df[metric] = dataset_df[metric].apply(make_bold)
|
| 137 |
-
for other_metric in selectable_metrics:
|
| 138 |
-
dataset_df[other_metric] = dataset_df[other_metric].apply(make_string)
|
| 139 |
-
|
| 140 |
-
# Make the selected metric appear right after model names
|
| 141 |
cols = dataset_df.columns.tolist()
|
| 142 |
-
cols.remove(
|
| 143 |
-
cols = cols[:1] + [
|
| 144 |
dataset_df = dataset_df[cols]
|
| 145 |
|
| 146 |
-
#
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
|
| 151 |
-
|
|
|
|
|
|
|
|
|
|
| 152 |
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
table_html = table_html.replace("<th>", '<th align="left">') # left-align the headers
|
| 156 |
-
st.write(table_html, unsafe_allow_html=True)
|
|
|
|
|
|
|
| 1 |
import pandas as pd
|
| 2 |
from tqdm.auto import tqdm
|
| 3 |
import streamlit as st
|
|
|
|
| 5 |
from huggingface_hub.repocard import metadata_load
|
| 6 |
from ascending_metrics import ascending_metrics
|
| 7 |
import numpy as np
|
| 8 |
+
from st_aggrid import AgGrid, GridOptionsBuilder, JsCode
|
| 9 |
+
from os.path import exists
|
| 10 |
+
import threading
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
|
| 13 |
def get_model_ids():
|
|
|
|
| 62 |
row[type] = value
|
| 63 |
yield row
|
| 64 |
|
| 65 |
+
@st.cache(ttl=3600)
|
| 66 |
+
def get_data_wrapper():
|
| 67 |
|
| 68 |
+
def get_data():
|
| 69 |
+
data = []
|
| 70 |
+
model_ids = get_model_ids()
|
| 71 |
+
for model_id in tqdm(model_ids):
|
| 72 |
+
meta = get_metadata(model_id)
|
| 73 |
+
if meta is None:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
continue
|
| 75 |
+
for row in parse_metrics_rows(meta):
|
| 76 |
+
if row is None:
|
| 77 |
+
continue
|
| 78 |
+
row["model_id"] = model_id
|
| 79 |
+
data.append(row)
|
| 80 |
+
dataframe = pd.DataFrame.from_records(data)
|
| 81 |
+
dataframe.to_pickle("cache.pkl")
|
| 82 |
+
|
| 83 |
+
if exists("cache.pkl"):
|
| 84 |
+
# If we have saved the results previously, call an asynchronous process
|
| 85 |
+
# to fetch the results and update the saved file. Don't make users wait
|
| 86 |
+
# while we fetch the new results. Instead, display the old results for
|
| 87 |
+
# now. The new results should be loaded when this method
|
| 88 |
+
# is called again.
|
| 89 |
+
dataframe = pd.read_pickle("cache.pkl")
|
| 90 |
+
t = threading.Thread(name='get_data procs', target=get_data)
|
| 91 |
+
t.start()
|
| 92 |
+
else:
|
| 93 |
+
# We have to make the users wait during the first startup of this app.
|
| 94 |
+
get_data()
|
| 95 |
+
dataframe = pd.read_pickle("cache.pkl")
|
| 96 |
+
|
| 97 |
+
return dataframe
|
| 98 |
+
|
| 99 |
+
dataframe = get_data_wrapper()
|
| 100 |
|
|
|
|
|
|
|
| 101 |
selectable_datasets = list(set(dataframe.dataset.tolist()))
|
| 102 |
|
| 103 |
st.markdown("# 🤗 Leaderboards")
|
|
|
|
| 113 |
selectable_datasets,
|
| 114 |
index=selectable_datasets.index(default_dataset),
|
| 115 |
)
|
| 116 |
+
st.experimental_set_query_params(**{"dataset": [dataset]})
|
| 117 |
|
| 118 |
dataset_df = dataframe[dataframe.dataset == dataset]
|
| 119 |
dataset_df = dataset_df.dropna(axis="columns", how="all")
|
| 120 |
|
| 121 |
selectable_metrics = list(filter(lambda column: column not in ("model_id", "dataset"), dataset_df.columns))
|
| 122 |
+
default_metric = st.sidebar.radio(
|
| 123 |
+
"Default Metric",
|
| 124 |
selectable_metrics,
|
| 125 |
)
|
| 126 |
|
| 127 |
dataset_df = dataset_df.filter(["model_id"] + selectable_metrics)
|
| 128 |
dataset_df = dataset_df.dropna(thresh=2) # Want at least two non-na values (one for model_id and one for a metric).
|
| 129 |
+
dataset_df = dataset_df.sort_values(by=default_metric, ascending=default_metric in ascending_metrics)
|
| 130 |
dataset_df = dataset_df.replace(np.nan, '-')
|
| 131 |
|
| 132 |
st.markdown(
|
|
|
|
| 137 |
"Want to beat the leaderboard? Don't see your model here? Simply request an automatic evaluation [here](https://huggingface.co/spaces/autoevaluate/autoevaluate)."
|
| 138 |
)
|
| 139 |
|
| 140 |
+
# Make the default metric appear right after model names
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
cols = dataset_df.columns.tolist()
|
| 142 |
+
cols.remove(default_metric)
|
| 143 |
+
cols = cols[:1] + [default_metric] + cols[1:]
|
| 144 |
dataset_df = dataset_df[cols]
|
| 145 |
|
| 146 |
+
# Make the leaderboard
|
| 147 |
+
gb = GridOptionsBuilder.from_dataframe(dataset_df)
|
| 148 |
+
gb.configure_column(
|
| 149 |
+
"model_id",
|
| 150 |
+
cellRenderer=JsCode('''function(params) {return '<a target="_blank" href="https://huggingface.co/'+params.value+'">'+params.value+'</a>'}'''),
|
| 151 |
+
)
|
| 152 |
+
for name in selectable_metrics:
|
| 153 |
+
gb.configure_column(name, type=["numericColumn","numberColumnFilter","customNumericFormat"], precision=2, aggFunc='sum')
|
| 154 |
|
| 155 |
+
gb.configure_column(
|
| 156 |
+
default_metric,
|
| 157 |
+
cellStyle=JsCode('''function(params) { return {'backgroundColor': '#FFD21E'}}''')
|
| 158 |
+
)
|
| 159 |
|
| 160 |
+
go = gb.build()
|
| 161 |
+
AgGrid(dataset_df, gridOptions=go, allow_unsafe_jscode=True, fit_columns_on_grid_load=True)
|
|
|
|
|
|
requirements.txt
CHANGED
|
@@ -2,4 +2,5 @@ pandas
|
|
| 2 |
tqdm
|
| 3 |
streamlit
|
| 4 |
huggingface_hub
|
| 5 |
-
numpy
|
|
|
|
|
|
| 2 |
tqdm
|
| 3 |
streamlit
|
| 4 |
huggingface_hub
|
| 5 |
+
numpy
|
| 6 |
+
streamlit-aggrid
|