Spaces:
Running
on
T4
Running
on
T4
import gc | |
import logging | |
from datetime import datetime | |
from fractions import Fraction | |
from pathlib import Path | |
import gradio as gr | |
import torch | |
import torchaudio | |
from mmaudio.eval_utils import (ModelConfig, VideoInfo, all_model_cfg, generate, load_image, | |
load_video, make_video, setup_eval_logging) | |
from mmaudio.model.flow_matching import FlowMatching | |
from mmaudio.model.networks import MMAudio, get_my_mmaudio | |
from mmaudio.model.sequence_config import SequenceConfig | |
from mmaudio.model.utils.features_utils import FeaturesUtils | |
# Setup logging | |
setup_eval_logging() | |
log = logging.getLogger() | |
# Configure device and dtype | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
if device == 'cpu': | |
log.warning('CUDA is not available, running on CPU') | |
dtype = torch.bfloat16 | |
# Configure model and paths | |
model: ModelConfig = all_model_cfg['large_44k_v2'] | |
model.download_if_needed() | |
output_dir = Path('./output/gradio') | |
output_dir.mkdir(exist_ok=True, parents=True) | |
def get_model() -> tuple[MMAudio, FeaturesUtils, SequenceConfig]: | |
seq_cfg = model.seq_cfg | |
net: MMAudio = get_my_mmaudio(model.model_name).to(device, dtype).eval() | |
net.load_weights(torch.load(model.model_path, map_location=device, weights_only=True)) | |
log.info(f'Loaded weights from {model.model_path}') | |
feature_utils = FeaturesUtils(tod_vae_ckpt=model.vae_path, | |
synchformer_ckpt=model.synchformer_ckpt, | |
enable_conditions=True, | |
mode=model.mode, | |
bigvgan_vocoder_ckpt=model.bigvgan_16k_path, | |
need_vae_encoder=False) | |
feature_utils = feature_utils.to(device, dtype).eval() | |
return net, feature_utils, seq_cfg | |
# Load model once at startup | |
net, feature_utils, seq_cfg = get_model() | |
def video_to_audio(video: gr.Video, prompt: str, negative_prompt: str, seed: int, num_steps: int, | |
cfg_strength: float, duration: float): | |
try: | |
rng = torch.Generator(device=device) | |
if seed >= 0: | |
rng.manual_seed(seed) | |
else: | |
rng.seed() | |
fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=num_steps) | |
video_info = load_video(video, duration) | |
clip_frames = video_info.clip_frames.unsqueeze(0) | |
sync_frames = video_info.sync_frames.unsqueeze(0) | |
duration = video_info.duration_sec | |
seq_cfg.duration = duration | |
net.update_seq_lengths(seq_cfg.latent_seq_len, seq_cfg.clip_seq_len, seq_cfg.sync_seq_len) | |
audios = generate(clip_frames, sync_frames, [prompt], | |
negative_text=[negative_prompt], | |
feature_utils=feature_utils, | |
net=net, | |
fm=fm, | |
rng=rng, | |
cfg_strength=cfg_strength) | |
audio = audios.float().cpu()[0] | |
current_time_string = datetime.now().strftime('%Y%m%d_%H%M%S') | |
video_save_path = output_dir / f'{current_time_string}.mp4' | |
make_video(video_info, video_save_path, audio, sampling_rate=seq_cfg.sampling_rate) | |
gc.collect() | |
torch.cuda.empty_cache() | |
return video_save_path | |
except Exception as e: | |
log.error(f"Error in video_to_audio: {str(e)}") | |
raise gr.Error(f"An error occurred: {str(e)}") | |
# Create the Gradio interface | |
demo = gr.Interface( | |
fn=video_to_audio, | |
title="MMAudio — Video-to-Audio Synthesis", | |
description=""" | |
Generate realistic audio for your videos using MMAudio! | |
Project page: [MMAudio](https://hkchengrex.com/MMAudio/) | |
Code: [GitHub](https://github.com/hkchengrex/MMAudio) | |
Note: Processing high-resolution videos (>384px on shorter side) takes longer and doesn't improve results. | |
""", | |
inputs=[ | |
gr.Video(label="Upload Video"), | |
gr.Text(label="Prompt", placeholder="Describe the audio you want to generate..."), | |
gr.Text(label="Negative prompt", value="music", placeholder="What you don't want in the audio..."), | |
gr.Number(label="Seed (-1: random)", value=-1, precision=0, minimum=-1), | |
gr.Number(label="Number of steps", value=25, precision=0, minimum=1), | |
gr.Slider(label="Guidance Strength", value=4.5, minimum=1, maximum=10, step=0.5), | |
gr.Slider(label="Duration (seconds)", value=8, minimum=1, maximum=30, step=1), | |
], | |
outputs=gr.Video(label="Generated Result"), | |
examples=[ | |
["https://huggingface.co/hkchengrex/MMAudio/resolve/main/examples/sora_beach.mp4", | |
"waves, seagulls", "", 0, 25, 4.5, 10], | |
["https://huggingface.co/hkchengrex/MMAudio/resolve/main/examples/sora_serpent.mp4", | |
"", "music", 0, 25, 4.5, 10], | |
], | |
cache_examples=True, | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
demo.launch(server_name="0.0.0.0", server_port=7860) | |