import gc import logging from datetime import datetime from fractions import Fraction from pathlib import Path import gradio as gr import torch import torchaudio from mmaudio.eval_utils import (ModelConfig, VideoInfo, all_model_cfg, generate, load_image, load_video, make_video, setup_eval_logging) from mmaudio.model.flow_matching import FlowMatching from mmaudio.model.networks import MMAudio, get_my_mmaudio from mmaudio.model.sequence_config import SequenceConfig from mmaudio.model.utils.features_utils import FeaturesUtils # Setup logging setup_eval_logging() log = logging.getLogger() # Configure device and dtype device = 'cuda' if torch.cuda.is_available() else 'cpu' if device == 'cpu': log.warning('CUDA is not available, running on CPU') dtype = torch.bfloat16 # Configure model and paths model: ModelConfig = all_model_cfg['large_44k_v2'] model.download_if_needed() output_dir = Path('./output/gradio') output_dir.mkdir(exist_ok=True, parents=True) def get_model() -> tuple[MMAudio, FeaturesUtils, SequenceConfig]: seq_cfg = model.seq_cfg net: MMAudio = get_my_mmaudio(model.model_name).to(device, dtype).eval() net.load_weights(torch.load(model.model_path, map_location=device, weights_only=True)) log.info(f'Loaded weights from {model.model_path}') feature_utils = FeaturesUtils(tod_vae_ckpt=model.vae_path, synchformer_ckpt=model.synchformer_ckpt, enable_conditions=True, mode=model.mode, bigvgan_vocoder_ckpt=model.bigvgan_16k_path, need_vae_encoder=False) feature_utils = feature_utils.to(device, dtype).eval() return net, feature_utils, seq_cfg # Load model once at startup net, feature_utils, seq_cfg = get_model() @torch.inference_mode() def video_to_audio(video: gr.Video, prompt: str, negative_prompt: str, seed: int, num_steps: int, cfg_strength: float, duration: float): try: rng = torch.Generator(device=device) if seed >= 0: rng.manual_seed(seed) else: rng.seed() fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=num_steps) video_info = load_video(video, duration) clip_frames = video_info.clip_frames.unsqueeze(0) sync_frames = video_info.sync_frames.unsqueeze(0) duration = video_info.duration_sec seq_cfg.duration = duration net.update_seq_lengths(seq_cfg.latent_seq_len, seq_cfg.clip_seq_len, seq_cfg.sync_seq_len) audios = generate(clip_frames, sync_frames, [prompt], negative_text=[negative_prompt], feature_utils=feature_utils, net=net, fm=fm, rng=rng, cfg_strength=cfg_strength) audio = audios.float().cpu()[0] current_time_string = datetime.now().strftime('%Y%m%d_%H%M%S') video_save_path = output_dir / f'{current_time_string}.mp4' make_video(video_info, video_save_path, audio, sampling_rate=seq_cfg.sampling_rate) gc.collect() torch.cuda.empty_cache() return video_save_path except Exception as e: log.error(f"Error in video_to_audio: {str(e)}") raise gr.Error(f"An error occurred: {str(e)}") # Create the Gradio interface demo = gr.Interface( fn=video_to_audio, title="MMAudio — Video-to-Audio Synthesis", description=""" Generate realistic audio for your videos using MMAudio! Project page: [MMAudio](https://hkchengrex.com/MMAudio/) Code: [GitHub](https://github.com/hkchengrex/MMAudio) Note: Processing high-resolution videos (>384px on shorter side) takes longer and doesn't improve results. """, inputs=[ gr.Video(label="Upload Video"), gr.Text(label="Prompt", placeholder="Describe the audio you want to generate..."), gr.Text(label="Negative prompt", value="music", placeholder="What you don't want in the audio..."), gr.Number(label="Seed (-1: random)", value=-1, precision=0, minimum=-1), gr.Number(label="Number of steps", value=25, precision=0, minimum=1), gr.Slider(label="Guidance Strength", value=4.5, minimum=1, maximum=10, step=0.5), gr.Slider(label="Duration (seconds)", value=8, minimum=1, maximum=30, step=1), ], outputs=gr.Video(label="Generated Result"), examples=[ ["https://huggingface.co/hkchengrex/MMAudio/resolve/main/examples/sora_beach.mp4", "waves, seagulls", "", 0, 25, 4.5, 10], ["https://huggingface.co/hkchengrex/MMAudio/resolve/main/examples/sora_serpent.mp4", "", "music", 0, 25, 4.5, 10], ], cache_examples=True, ) # Launch the app if __name__ == "__main__": demo.launch(server_name="0.0.0.0", server_port=7860)