|
import streamlit as st |
|
import time |
|
import random |
|
import json |
|
from datetime import datetime |
|
import pytz |
|
import platform |
|
import uuid |
|
import extra_streamlit_components as stx |
|
from io import BytesIO |
|
from PIL import Image |
|
import base64 |
|
import cv2 |
|
import requests |
|
from moviepy.editor import VideoFileClip |
|
from gradio_client import Client |
|
from openai import OpenAI |
|
import openai |
|
import os |
|
from collections import deque |
|
import numpy as np |
|
from dotenv import load_dotenv |
|
|
|
|
|
load_dotenv() |
|
|
|
|
|
st.set_page_config(page_title="Personalized Real-Time Chat", page_icon="💬", layout="wide") |
|
|
|
|
|
cookie_manager = stx.CookieManager() |
|
|
|
|
|
CHAT_FILE = "chat_history.txt" |
|
|
|
|
|
def save_data(): |
|
with open(CHAT_FILE, 'w') as f: |
|
json.dump({ |
|
'messages': st.session_state.messages, |
|
'users': st.session_state.users |
|
}, f) |
|
|
|
|
|
def load_data(): |
|
try: |
|
with open(CHAT_FILE, 'r') as f: |
|
data = json.load(f) |
|
st.session_state.messages = data['messages'] |
|
st.session_state.users = data['users'] |
|
except FileNotFoundError: |
|
st.session_state.messages = [] |
|
st.session_state.users = [] |
|
|
|
|
|
load_data() |
|
|
|
|
|
def get_or_create_user(): |
|
user_id = cookie_manager.get(cookie='user_id') |
|
if not user_id: |
|
user_id = str(uuid.uuid4()) |
|
cookie_manager.set('user_id', user_id) |
|
|
|
user = next((u for u in st.session_state.users if u['id'] == user_id), None) |
|
if not user: |
|
user = { |
|
'id': user_id, |
|
'name': random.choice(['Alice', 'Bob', 'Charlie', 'David', 'Eve', 'Frank', 'Grace', 'Henry']), |
|
'browser': f"{platform.system()} - {st.session_state.get('browser_info', 'Unknown')}" |
|
} |
|
st.session_state.users.append(user) |
|
save_data() |
|
|
|
return user |
|
|
|
|
|
if 'messages' not in st.session_state: |
|
st.session_state.messages = [] |
|
if 'users' not in st.session_state: |
|
st.session_state.users = [] |
|
if 'current_user' not in st.session_state: |
|
st.session_state.current_user = get_or_create_user() |
|
|
|
|
|
openai.api_key = os.getenv('OPENAI_API_KEY') |
|
openai.organization = os.getenv('OPENAI_ORG_ID') |
|
client = OpenAI(api_key=openai.api_key, organization=openai.organization) |
|
GPT4O_MODEL = "gpt-4o-2024-05-13" |
|
|
|
|
|
hf_client = OpenAI( |
|
base_url="https://api-inference.huggingface.co/v1", |
|
api_key=os.environ.get('API_KEY') |
|
) |
|
|
|
|
|
model_links = { |
|
"GPT-4o": GPT4O_MODEL, |
|
"Meta-Llama-3.1-70B-Instruct": "meta-llama/Meta-Llama-3.1-70B-Instruct", |
|
"Meta-Llama-3.1-405B-Instruct-FP8": "meta-llama/Meta-Llama-3.1-405B-Instruct-FP8", |
|
"Meta-Llama-3.1-405B-Instruct": "meta-llama/Meta-Llama-3.1-405B-Instruct", |
|
"Meta-Llama-3.1-8B-Instruct": "meta-llama/Meta-Llama-3.1-8B-Instruct", |
|
"Meta-Llama-3-70B-Instruct": "meta-llama/Meta-Llama-3-70B-Instruct", |
|
"Meta-Llama-3-8B-Instruct": "meta-llama/Meta-Llama-3-8B-Instruct", |
|
"C4ai-command-r-plus": "CohereForAI/c4ai-command-r-plus", |
|
"Aya-23-35B": "CohereForAI/aya-23-35B", |
|
"Zephyr-orpo-141b-A35b-v0.1": "HuggingFaceH4/zephyr-orpo-141b-A35b-v0.1", |
|
"Mixtral-8x7B-Instruct-v0.1": "mistralai/Mixtral-8x7B-Instruct-v0.1", |
|
"Codestral-22B-v0.1": "mistralai/Codestral-22B-v0.1", |
|
"Nous-Hermes-2-Mixtral-8x7B-DPO": "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO", |
|
"Yi-1.5-34B-Chat": "01-ai/Yi-1.5-34B-Chat", |
|
"Gemma-2-27b-it": "google/gemma-2-27b-it", |
|
"Meta-Llama-2-70B-Chat-HF": "meta-llama/Llama-2-70b-chat-hf", |
|
"Meta-Llama-2-7B-Chat-HF": "meta-llama/Llama-2-7b-chat-hf", |
|
"Meta-Llama-2-13B-Chat-HF": "meta-llama/Llama-2-13b-chat-hf", |
|
"Mistral-7B-Instruct-v0.1": "mistralai/Mistral-7B-Instruct-v0.1", |
|
"Mistral-7B-Instruct-v0.2": "mistralai/Mistral-7B-Instruct-v0.2", |
|
"Mistral-7B-Instruct-v0.3": "mistralai/Mistral-7B-Instruct-v0.3", |
|
"Gemma-1.1-7b-it": "google/gemma-1.1-7b-it", |
|
"Gemma-1.1-2b-it": "google/gemma-1.1-2b-it", |
|
"Zephyr-7B-Beta": "HuggingFaceH4/zephyr-7b-beta", |
|
"Zephyr-7B-Alpha": "HuggingFaceH4/zephyr-7b-alpha", |
|
"Phi-3-mini-128k-instruct": "microsoft/Phi-3-mini-128k-instruct", |
|
"Phi-3-mini-4k-instruct": "microsoft/Phi-3-mini-4k-instruct", |
|
} |
|
|
|
|
|
def reset_conversation(): |
|
st.session_state.conversation = [] |
|
st.session_state.messages = [] |
|
|
|
|
|
def generate_filename(prompt, file_type): |
|
central = pytz.timezone('US/Central') |
|
safe_date_time = datetime.now(central).strftime("%m%d_%H%M") |
|
replaced_prompt = prompt.replace(" ", "_").replace("\n", "_") |
|
safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:90] |
|
return f"{safe_date_time}_{safe_prompt}.{file_type}" |
|
|
|
|
|
def create_file(filename, prompt, response, user_name, timestamp): |
|
with open(filename, "w", encoding="utf-8") as f: |
|
f.write(f"User: {user_name}\nTimestamp: {timestamp}\n\nPrompt:\n{prompt}\n\nResponse:\n{response}") |
|
|
|
|
|
def extract_video_frames(video_path, seconds_per_frame=2): |
|
base64Frames = [] |
|
video = cv2.VideoCapture(video_path) |
|
total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) |
|
fps = video.get(cv2.CAP_PROP_FPS) |
|
frames_to_skip = int(fps * seconds_per_frame) |
|
curr_frame = 0 |
|
while curr_frame < total_frames - 1: |
|
video.set(cv2.CAP_PROP_POS_FRAMES, curr_frame) |
|
success, frame = video.read() |
|
if not success: |
|
break |
|
_, buffer = cv2.imencode(".jpg", frame) |
|
base64Frames.append(base64.b64encode(buffer).decode("utf-8")) |
|
curr_frame += frames_to_skip |
|
video.release() |
|
return base64Frames, None |
|
|
|
|
|
def process_audio_for_video(video_input): |
|
try: |
|
transcription = client.audio.transcriptions.create( |
|
model="whisper-1", |
|
file=video_input, |
|
) |
|
return transcription.text |
|
except: |
|
return '' |
|
|
|
|
|
def process_text(user_name, text_input, selected_model, temp_values): |
|
timestamp = datetime.now(pytz.utc).strftime('%Y-%m-%d %H:%M:%S %Z') |
|
st.session_state.messages.append({"user": user_name, "message": text_input, "timestamp": timestamp}) |
|
|
|
with st.chat_message(user_name): |
|
st.markdown(f"{user_name} ({timestamp}): {text_input}") |
|
|
|
with st.chat_message("Assistant"): |
|
if selected_model == "GPT-4o": |
|
completion = client.chat.completions.create( |
|
model=GPT4O_MODEL, |
|
messages=[ |
|
{"role": "user", "content": m["message"]} |
|
for m in st.session_state.messages |
|
], |
|
stream=True, |
|
temperature=temp_values |
|
) |
|
return_text = st.write_stream(completion) |
|
else: |
|
try: |
|
stream = hf_client.chat.completions.create( |
|
model=model_links[selected_model], |
|
messages=[ |
|
|
|
|
|
{"role": "user", "content": m["message"]} |
|
|
|
for m in st.session_state.messages |
|
], |
|
temperature=temp_values, |
|
stream=True, |
|
max_tokens=3000, |
|
) |
|
return_text = st.write_stream(stream) |
|
except Exception as e: |
|
return_text = f"Error: {str(e)}" |
|
st.error(return_text) |
|
|
|
st.markdown(f"Assistant ({timestamp}): {return_text}") |
|
filename = generate_filename(text_input, "md") |
|
create_file(filename, text_input, return_text, user_name, timestamp) |
|
st.session_state.messages.append({"user": "Assistant", "message": return_text, "timestamp": timestamp}) |
|
save_data() |
|
|
|
|
|
def process_image(user_name, image_input, user_prompt): |
|
image = Image.open(BytesIO(image_input)) |
|
base64_image = base64.b64encode(image_input).decode("utf-8") |
|
|
|
response = client.chat.completions.create( |
|
model=GPT4O_MODEL, |
|
messages=[ |
|
{"role": "system", "content": "You are a helpful assistant that responds in Markdown."}, |
|
{"role": "user", "content": [ |
|
{"type": "text", "text": user_prompt}, |
|
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{base64_image}"}} |
|
]} |
|
], |
|
temperature=0.0, |
|
) |
|
image_response = response.choices[0].message.content |
|
|
|
timestamp = datetime.now(pytz.utc).strftime('%Y-%m-%d %H:%M:%S %Z') |
|
st.session_state.messages.append({"user": user_name, "message": image_response, "timestamp": timestamp}) |
|
|
|
with st.chat_message(user_name): |
|
st.image(image) |
|
st.markdown(f"{user_name} ({timestamp}): {user_prompt}") |
|
|
|
with st.chat_message("Assistant"): |
|
st.markdown(image_response) |
|
|
|
filename_md = generate_filename(user_prompt, "md") |
|
create_file(filename_md, user_prompt, image_response, user_name, timestamp) |
|
save_data() |
|
return image_response |
|
|
|
|
|
def process_audio(user_name, audio_input, text_input): |
|
if audio_input: |
|
transcription = client.audio.transcriptions.create( |
|
model="whisper-1", |
|
file=audio_input, |
|
) |
|
timestamp = datetime.now(pytz.utc).strftime('%Y-%m-%d %H:%M:%S %Z') |
|
st.session_state.messages.append({"user": user_name, "message": transcription.text, "timestamp": timestamp}) |
|
with st.chat_message(user_name): |
|
st.markdown(f"{user_name} ({timestamp}): {transcription.text}") |
|
with st.chat_message("Assistant"): |
|
st.markdown(transcription.text) |
|
filename = generate_filename(transcription.text, "wav") |
|
create_file(filename, text_input, transcription.text, user_name, timestamp) |
|
st.session_state.messages.append({"user": "Assistant", "message": transcription.text, "timestamp": timestamp}) |
|
save_data() |
|
|
|
|
|
def process_video(user_name, video_input, user_prompt): |
|
if isinstance(video_input, str): |
|
with open(video_input, "rb") as video_file: |
|
video_input = video_file.read() |
|
base64Frames, audio_path = extract_video_frames(video_input) |
|
transcript = process_audio_for_video(video_input) |
|
response = client.chat.completions.create( |
|
model=GPT4O_MODEL, |
|
messages=[ |
|
{"role": "system", "content": "You are generating a video summary. Create a summary of the provided video and its transcript. Respond in Markdown"}, |
|
{"role": "user", "content": [ |
|
"These are the frames from the video.", |
|
*map(lambda x: {"type": "image_url", "image_url": {"url": f'data:image/jpg;base64,{x}', "detail": "low"}}, base64Frames), |
|
{"type": "text", "text": f"The audio transcription is: {transcript}"}, |
|
{"type": "text", "text": user_prompt} |
|
]} |
|
], |
|
temperature=0, |
|
) |
|
video_response = response.choices[0].message.content |
|
st.markdown(video_response) |
|
timestamp = datetime.now(pytz.utc).strftime('%Y-%m-%d %H:%M:%S %Z') |
|
filename_md = generate_filename(user_prompt, "md") |
|
create_file(filename_md, user_prompt, video_response, user_name, timestamp) |
|
st.session_state.messages.append({"user": user_name, "message": video_response, "timestamp": timestamp}) |
|
save_data() |
|
return video_response |
|
|
|
|
|
def main_column(column_name): |
|
st.markdown(f"##### {column_name}") |
|
selected_model = st.selectbox(f"Select Model for {column_name}", list(model_links.keys()), key=f"{column_name}_model") |
|
temp_values = st.slider(f'Select a temperature value for {column_name}', 0.0, 1.0, (0.5), key=f"{column_name}_temp") |
|
|
|
option = st.selectbox(f"Select an option for {column_name}", ("Text", "Image", "Audio", "Video"), key=f"{column_name}_option") |
|
|
|
if option == "Text": |
|
text_input = st.text_input(f"Enter your text for {column_name}:", key=f"{column_name}_text") |
|
if text_input: |
|
process_text(st.session_state.current_user['name'], text_input, selected_model, temp_values) |
|
elif option == "Image": |
|
text_input = st.text_input(f"Enter text prompt to use with Image context for {column_name}:", key=f"{column_name}_image_text") |
|
uploaded_files = st.file_uploader(f"Upload images for {column_name}", type=["png", "jpg", "jpeg"], accept_multiple_files=True, key=f"{column_name}_image_upload") |
|
for image_input in uploaded_files: |
|
image_bytes = image_input.read() |
|
process_image(st.session_state.current_user['name'], image_bytes, text_input) |
|
elif option == "Audio": |
|
text_input = st.text_input(f"Enter text prompt to use with Audio context for {column_name}:", key=f"{column_name}_audio_text") |
|
uploaded_files = st.file_uploader(f"Upload an audio file for {column_name}", type=["mp3", "wav"], accept_multiple_files=True, key=f"{column_name}_audio_upload") |
|
for audio_input in uploaded_files: |
|
process_audio(st.session_state.current_user['name'], audio_input, text_input) |
|
elif option == "Video": |
|
video_input = st.file_uploader(f"Upload a video file for {column_name}", type=["mp4"], key=f"{column_name}_video_upload") |
|
text_input = st.text_input(f"Enter text prompt to use with Video context for {column_name}:", key=f"{column_name}_video_text") |
|
if video_input and text_input: |
|
process_video(st.session_state.current_user['name'], video_input, text_input) |
|
|
|
|
|
st.title("Personalized Real-Time Chat") |
|
|
|
|
|
with st.sidebar: |
|
st.title("User Info") |
|
st.write(f"Current User: {st.session_state.current_user['name']}") |
|
st.write(f"Browser: {st.session_state.current_user['browser']}") |
|
|
|
new_name = st.text_input("Change your name:") |
|
if st.button("Update Name"): |
|
if new_name: |
|
for user in st.session_state.users: |
|
if user['id'] == st.session_state.current_user['id']: |
|
user['name'] = new_name |
|
st.session_state.current_user['name'] = new_name |
|
save_data() |
|
st.success(f"Name updated to {new_name}") |
|
break |
|
|
|
st.title("Active Users") |
|
for user in st.session_state.users: |
|
st.write(f"{user['name']} ({user['browser']})") |
|
|
|
if st.button('Reset Chat'): |
|
reset_conversation() |
|
|
|
|
|
col1, col2 = st.columns(2) |
|
|
|
|
|
with col1: |
|
main_column("Column 1") |
|
|
|
with col2: |
|
main_column("Column 2") |
|
|
|
|
|
if __name__ == "__main__": |
|
st.markdown("*by Aaron Wacker*") |
|
st.markdown("\n[Aaron Wacker](https://huggingface.co/spaces/awacke1/).") |