Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update app.py
Browse files
app.py
CHANGED
@@ -67,15 +67,21 @@ def process_audio(audio_input):
|
|
67 |
)
|
68 |
st.markdown(response.choices[0].message.content)
|
69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
def process_video(video_path, seconds_per_frame=2):
|
71 |
base64Frames = []
|
72 |
base_video_path, _ = os.path.splitext(video_path)
|
73 |
-
|
74 |
video = cv2.VideoCapture(video_path)
|
75 |
total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
|
76 |
fps = video.get(cv2.CAP_PROP_FPS)
|
77 |
frames_to_skip = int(fps * seconds_per_frame)
|
78 |
-
curr_frame=0
|
79 |
|
80 |
# Loop through the video and extract frames at specified sampling rate
|
81 |
while curr_frame < total_frames - 1:
|
@@ -86,6 +92,7 @@ def process_video(video_path, seconds_per_frame=2):
|
|
86 |
_, buffer = cv2.imencode(".jpg", frame)
|
87 |
base64Frames.append(base64.b64encode(buffer).decode("utf-8"))
|
88 |
curr_frame += frames_to_skip
|
|
|
89 |
video.release()
|
90 |
|
91 |
# Extract audio from video
|
@@ -97,54 +104,34 @@ def process_video(video_path, seconds_per_frame=2):
|
|
97 |
|
98 |
print(f"Extracted {len(base64Frames)} frames")
|
99 |
print(f"Extracted audio to {audio_path}")
|
|
|
100 |
return base64Frames, audio_path
|
101 |
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
|
|
|
|
|
|
118 |
],
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
st.markdown(response.choices[0].message.content)
|
124 |
|
125 |
-
def process_video_frames(video_path, seconds_per_frame=2):
|
126 |
-
base64Frames = []
|
127 |
-
base_video_path, _ = os.path.splitext(video_path.name)
|
128 |
-
video = cv2.VideoCapture(video_path.name)
|
129 |
-
total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
|
130 |
-
fps = video.get(cv2.CAP_PROP_FPS)
|
131 |
-
frames_to_skip = int(fps * seconds_per_frame)
|
132 |
-
curr_frame = 0
|
133 |
-
while curr_frame < total_frames - 1:
|
134 |
-
video.set(cv2.CAP_PROP_POS_FRAMES, curr_frame)
|
135 |
-
success, frame = video.read()
|
136 |
-
if not success:
|
137 |
-
break
|
138 |
-
_, buffer = cv2.imencode(".jpg", frame)
|
139 |
-
base64Frames.append(base64.b64encode(buffer).decode("utf-8"))
|
140 |
-
curr_frame += frames_to_skip
|
141 |
-
video.release()
|
142 |
-
audio_path = f"{base_video_path}.mp3"
|
143 |
-
clip = VideoFileClip(video_path.name)
|
144 |
-
clip.audio.write_audiofile(audio_path, bitrate="32k")
|
145 |
-
clip.audio.close()
|
146 |
-
clip.close()
|
147 |
-
return base64Frames, audio_path
|
148 |
|
149 |
def main():
|
150 |
st.markdown("### OpenAI GPT-4o Model")
|
|
|
67 |
)
|
68 |
st.markdown(response.choices[0].message.content)
|
69 |
|
70 |
+
|
71 |
+
def save_video(video_file):
|
72 |
+
# Save the uploaded video file
|
73 |
+
with open(video_file.name, "wb") as f:
|
74 |
+
f.write(video_file.getbuffer())
|
75 |
+
return video_file.name
|
76 |
+
|
77 |
def process_video(video_path, seconds_per_frame=2):
|
78 |
base64Frames = []
|
79 |
base_video_path, _ = os.path.splitext(video_path)
|
|
|
80 |
video = cv2.VideoCapture(video_path)
|
81 |
total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
|
82 |
fps = video.get(cv2.CAP_PROP_FPS)
|
83 |
frames_to_skip = int(fps * seconds_per_frame)
|
84 |
+
curr_frame = 0
|
85 |
|
86 |
# Loop through the video and extract frames at specified sampling rate
|
87 |
while curr_frame < total_frames - 1:
|
|
|
92 |
_, buffer = cv2.imencode(".jpg", frame)
|
93 |
base64Frames.append(base64.b64encode(buffer).decode("utf-8"))
|
94 |
curr_frame += frames_to_skip
|
95 |
+
|
96 |
video.release()
|
97 |
|
98 |
# Extract audio from video
|
|
|
104 |
|
105 |
print(f"Extracted {len(base64Frames)} frames")
|
106 |
print(f"Extracted audio to {audio_path}")
|
107 |
+
|
108 |
return base64Frames, audio_path
|
109 |
|
110 |
+
def ProcessVideo(video_input)
|
111 |
+
if video_input is not None:
|
112 |
+
# Save the uploaded video file
|
113 |
+
video_path = save_video(video_file)
|
114 |
+
|
115 |
+
# Process the saved video
|
116 |
+
base64Frames, audio_path = process_video(video_path, seconds_per_frame=1)
|
117 |
+
|
118 |
+
# Generate a summary with visual and audio
|
119 |
+
response = client.chat.completions.create(
|
120 |
+
model=MODEL,
|
121 |
+
messages=[
|
122 |
+
{"role": "system", "content": """You are generating a video summary. Create a summary of the provided video and its transcript. Respond in Markdown"""},
|
123 |
+
{"role": "user", "content": [
|
124 |
+
"These are the frames from the video.",
|
125 |
+
*map(lambda x: {"type": "image_url",
|
126 |
+
"image_url": {"url": f'data:image/jpg;base64,{x}', "detail": "low"}}, base64Frames),
|
127 |
+
{"type": "text", "text": f"The audio transcription is: {transcription.text}"}
|
128 |
+
]},
|
129 |
],
|
130 |
+
temperature=0,
|
131 |
+
)
|
132 |
+
|
133 |
+
st.markdown(response.choices[0].message.content)
|
|
|
134 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
def main():
|
137 |
st.markdown("### OpenAI GPT-4o Model")
|