Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update app.py
Browse files
app.py
CHANGED
@@ -5,54 +5,109 @@ import os
|
|
5 |
import base64
|
6 |
import cv2
|
7 |
from moviepy.editor import VideoFileClip
|
8 |
-
|
9 |
-
|
10 |
-
# 1. Cookbook: https://cookbook.openai.com/examples/gpt4o/introduction_to_gpt4o
|
11 |
-
# 2. Configure your Project and Orgs to limit/allow Models: https://platform.openai.com/settings/organization/general
|
12 |
-
# 3. Watch your Billing! https://platform.openai.com/settings/organization/billing/overview
|
13 |
-
|
14 |
|
15 |
# Set API key and organization ID from environment variables
|
16 |
openai.api_key = os.getenv('OPENAI_API_KEY')
|
17 |
openai.organization = os.getenv('OPENAI_ORG_ID')
|
18 |
-
client = OpenAI(api_key=
|
19 |
|
20 |
# Define the model to be used
|
21 |
-
#MODEL = "gpt-4o"
|
22 |
MODEL = "gpt-4o-2024-05-13"
|
23 |
|
24 |
-
def
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
if text_input:
|
|
|
27 |
completion = client.chat.completions.create(
|
28 |
model=MODEL,
|
29 |
-
messages=
|
30 |
-
{"role": "system", "content": "You are a helpful assistant. Help me with my math homework!"},
|
31 |
-
{"role": "user", "content": f"Hello! Could you solve {text_input}?"}
|
32 |
-
]
|
33 |
)
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
def process_image(image_input):
|
37 |
if image_input:
|
|
|
38 |
base64_image = base64.b64encode(image_input.read()).decode("utf-8")
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
response = client.chat.completions.create(
|
40 |
model=MODEL,
|
41 |
-
messages=
|
42 |
-
{"role": "system", "content": "You are a helpful assistant that responds in Markdown."},
|
43 |
-
{"role": "user", "content": [
|
44 |
-
{"type": "text", "text": "Help me understand what is in this picture and list ten facts as markdown outline with appropriate emojis that describes what you see."},
|
45 |
-
{"type": "image_url", "image_url": {
|
46 |
-
"url": f"data:image/png;base64,{base64_image}"}
|
47 |
-
}
|
48 |
-
]}
|
49 |
-
],
|
50 |
temperature=0.0,
|
51 |
)
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
def process_audio(audio_input):
|
55 |
if audio_input:
|
|
|
56 |
transcription = client.audio.transcriptions.create(
|
57 |
model="whisper-1",
|
58 |
file=audio_input,
|
@@ -65,10 +120,15 @@ def process_audio(audio_input):
|
|
65 |
],
|
66 |
temperature=0,
|
67 |
)
|
68 |
-
|
|
|
|
|
|
|
|
|
69 |
|
70 |
def process_audio_for_video(video_input):
|
71 |
if video_input:
|
|
|
72 |
transcription = client.audio.transcriptions.create(
|
73 |
model="whisper-1",
|
74 |
file=video_input,
|
@@ -81,8 +141,12 @@ def process_audio_for_video(video_input):
|
|
81 |
],
|
82 |
temperature=0,
|
83 |
)
|
84 |
-
|
85 |
-
|
|
|
|
|
|
|
|
|
86 |
|
87 |
def save_video(video_file):
|
88 |
# Save the uploaded video file
|
@@ -126,7 +190,7 @@ def process_video(video_path, seconds_per_frame=2):
|
|
126 |
def process_audio_and_video(video_input):
|
127 |
if video_input is not None:
|
128 |
# Save the uploaded video file
|
129 |
-
video_path = save_video(video_input
|
130 |
|
131 |
# Process the saved video
|
132 |
base64Frames, audio_path = process_video(video_path, seconds_per_frame=1)
|
@@ -135,29 +199,31 @@ def process_audio_and_video(video_input):
|
|
135 |
transcript = process_audio_for_video(video_input)
|
136 |
|
137 |
# Generate a summary with visual and audio
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
response = client.chat.completions.create(
|
139 |
model=MODEL,
|
140 |
-
messages=
|
141 |
-
{"role": "system", "content": """You are generating a video summary. Create a summary of the provided video and its transcript. Respond in Markdown"""},
|
142 |
-
{"role": "user", "content": [
|
143 |
-
"These are the frames from the video.",
|
144 |
-
*map(lambda x: {"type": "image_url",
|
145 |
-
"image_url": {"url": f'data:image/jpg;base64,{x}', "detail": "low"}}, base64Frames),
|
146 |
-
{"type": "text", "text": f"The audio transcription is: {transcript}"}
|
147 |
-
]},
|
148 |
-
],
|
149 |
temperature=0,
|
150 |
)
|
151 |
-
|
152 |
-
st.markdown(
|
153 |
-
|
|
|
|
|
|
|
154 |
|
155 |
def main():
|
156 |
-
st.markdown("
|
157 |
-
st.markdown("#### The Omni Model with Text, Audio, Image, and Video")
|
158 |
option = st.selectbox("Select an option", ("Text", "Image", "Audio", "Video"))
|
159 |
if option == "Text":
|
160 |
-
|
|
|
|
|
161 |
elif option == "Image":
|
162 |
image_input = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
|
163 |
process_image(image_input)
|
@@ -167,6 +233,53 @@ def main():
|
|
167 |
elif option == "Video":
|
168 |
video_input = st.file_uploader("Upload a video file", type=["mp4"])
|
169 |
process_audio_and_video(video_input)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
|
171 |
if __name__ == "__main__":
|
172 |
-
main()
|
|
|
5 |
import base64
|
6 |
import cv2
|
7 |
from moviepy.editor import VideoFileClip
|
8 |
+
import pytz
|
9 |
+
from datetime import datetime
|
|
|
|
|
|
|
|
|
10 |
|
11 |
# Set API key and organization ID from environment variables
|
12 |
openai.api_key = os.getenv('OPENAI_API_KEY')
|
13 |
openai.organization = os.getenv('OPENAI_ORG_ID')
|
14 |
+
client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'), organization=os.getenv('OPENAI_ORG_ID'))
|
15 |
|
16 |
# Define the model to be used
|
|
|
17 |
MODEL = "gpt-4o-2024-05-13"
|
18 |
|
19 |
+
def generate_filename(prompt, file_type):
|
20 |
+
central = pytz.timezone('US/Central')
|
21 |
+
safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
|
22 |
+
replaced_prompt = prompt.replace(" ", "_").replace("\n", "_")
|
23 |
+
safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:90]
|
24 |
+
return f"{safe_date_time}_{safe_prompt}.{file_type}"
|
25 |
+
|
26 |
+
def create_file(filename, prompt, response, should_save=True):
|
27 |
+
if not should_save:
|
28 |
+
return
|
29 |
+
base_filename, ext = os.path.splitext(filename)
|
30 |
+
if ext in ['.txt', '.htm', '.md']:
|
31 |
+
with open(f"{base_filename}.md", 'w', encoding='utf-8') as file:
|
32 |
+
file.write(response)
|
33 |
+
|
34 |
+
def process_text(text_input):
|
35 |
+
if text_input:
|
36 |
+
st.session_state.messages.append({"role": "user", "content": text_input})
|
37 |
+
|
38 |
+
with st.chat_message("user"):
|
39 |
+
st.markdown(text_input)
|
40 |
+
|
41 |
+
with st.chat_message("assistant"):
|
42 |
+
completion = client.chat.completions.create(
|
43 |
+
model=MODEL,
|
44 |
+
messages=[
|
45 |
+
{"role": m["role"], "content": m["content"]}
|
46 |
+
for m in st.session_state.messages
|
47 |
+
],
|
48 |
+
stream=False
|
49 |
+
)
|
50 |
+
return_text = completion.choices[0].message.content
|
51 |
+
st.write("Assistant: " + return_text)
|
52 |
+
filename = generate_filename(text_input, "md")
|
53 |
+
create_file(filename, text_input, return_text, should_save=True)
|
54 |
+
st.session_state.messages.append({"role": "assistant", "content": return_text})
|
55 |
+
|
56 |
+
def process_text2(MODEL='gpt-4o-2024-05-13', text_input='What is 2+2 and what is an imaginary number'):
|
57 |
if text_input:
|
58 |
+
st.session_state.messages.append({"role": "user", "content": text_input})
|
59 |
completion = client.chat.completions.create(
|
60 |
model=MODEL,
|
61 |
+
messages=st.session_state.messages
|
|
|
|
|
|
|
62 |
)
|
63 |
+
return_text = completion.choices[0].message.content
|
64 |
+
st.write("Assistant: " + return_text)
|
65 |
+
filename = generate_filename(text_input, "md")
|
66 |
+
create_file(filename, text_input, return_text, should_save=True)
|
67 |
+
return return_text
|
68 |
+
|
69 |
+
def save_image(image_input, filename):
|
70 |
+
# Save the uploaded image file
|
71 |
+
with open(filename, "wb") as f:
|
72 |
+
f.write(image_input.getvalue())
|
73 |
+
return filename
|
74 |
|
75 |
def process_image(image_input):
|
76 |
if image_input:
|
77 |
+
st.markdown('Processing image: ' + image_input.name )
|
78 |
base64_image = base64.b64encode(image_input.read()).decode("utf-8")
|
79 |
+
st.session_state.messages.append({"role": "user", "content": [
|
80 |
+
{"type": "text", "text": "Help me understand what is in this picture and list ten facts as markdown outline with appropriate emojis that describes what you see."},
|
81 |
+
{"type": "image_url", "image_url": {
|
82 |
+
"url": f"data:image/png;base64,{base64_image}"}
|
83 |
+
}
|
84 |
+
]})
|
85 |
response = client.chat.completions.create(
|
86 |
model=MODEL,
|
87 |
+
messages=st.session_state.messages,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
temperature=0.0,
|
89 |
)
|
90 |
+
image_response = response.choices[0].message.content
|
91 |
+
st.markdown(image_response)
|
92 |
+
|
93 |
+
filename_md = generate_filename(image_input.name + '- ' + image_response, "md")
|
94 |
+
filename_png = filename_md.replace('.md', '.' + image_input.name.split('.')[-1])
|
95 |
+
|
96 |
+
create_file(filename_md, image_response, '', True)
|
97 |
+
|
98 |
+
with open(filename_md, "w", encoding="utf-8") as f:
|
99 |
+
f.write(image_response)
|
100 |
+
|
101 |
+
filename_img = image_input.name
|
102 |
+
save_image(image_input, filename_img)
|
103 |
+
|
104 |
+
st.session_state.messages.append({"role": "assistant", "content": image_response})
|
105 |
+
|
106 |
+
return image_response
|
107 |
|
108 |
def process_audio(audio_input):
|
109 |
if audio_input:
|
110 |
+
st.session_state.messages.append({"role": "user", "content": audio_input})
|
111 |
transcription = client.audio.transcriptions.create(
|
112 |
model="whisper-1",
|
113 |
file=audio_input,
|
|
|
120 |
],
|
121 |
temperature=0,
|
122 |
)
|
123 |
+
audio_response = response.choices[0].message.content
|
124 |
+
st.markdown(audio_response)
|
125 |
+
filename = generate_filename(transcription.text, "md")
|
126 |
+
create_file(filename, transcription.text, audio_response, should_save=True)
|
127 |
+
st.session_state.messages.append({"role": "assistant", "content": audio_response})
|
128 |
|
129 |
def process_audio_for_video(video_input):
|
130 |
if video_input:
|
131 |
+
st.session_state.messages.append({"role": "user", "content": video_input})
|
132 |
transcription = client.audio.transcriptions.create(
|
133 |
model="whisper-1",
|
134 |
file=video_input,
|
|
|
141 |
],
|
142 |
temperature=0,
|
143 |
)
|
144 |
+
video_response = response.choices[0].message.content
|
145 |
+
st.markdown(video_response)
|
146 |
+
filename = generate_filename(transcription, "md")
|
147 |
+
create_file(filename, transcription, video_response, should_save=True)
|
148 |
+
st.session_state.messages.append({"role": "assistant", "content": video_response})
|
149 |
+
return video_response
|
150 |
|
151 |
def save_video(video_file):
|
152 |
# Save the uploaded video file
|
|
|
190 |
def process_audio_and_video(video_input):
|
191 |
if video_input is not None:
|
192 |
# Save the uploaded video file
|
193 |
+
video_path = save_video(video_input)
|
194 |
|
195 |
# Process the saved video
|
196 |
base64Frames, audio_path = process_video(video_path, seconds_per_frame=1)
|
|
|
199 |
transcript = process_audio_for_video(video_input)
|
200 |
|
201 |
# Generate a summary with visual and audio
|
202 |
+
st.session_state.messages.append({"role": "user", "content": [
|
203 |
+
"These are the frames from the video.",
|
204 |
+
*map(lambda x: {"type": "image_url",
|
205 |
+
"image_url": {"url": f'data:image/jpg;base64,{x}', "detail": "low"}}, base64Frames),
|
206 |
+
{"type": "text", "text": f"The audio transcription is: {transcript}"}
|
207 |
+
]})
|
208 |
response = client.chat.completions.create(
|
209 |
model=MODEL,
|
210 |
+
messages=st.session_state.messages,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
211 |
temperature=0,
|
212 |
)
|
213 |
+
video_response = response.choices[0].message.content
|
214 |
+
st.markdown(video_response)
|
215 |
+
|
216 |
+
filename = generate_filename(transcript, "md")
|
217 |
+
create_file(filename, transcript, video_response, should_save=True)
|
218 |
+
st.session_state.messages.append({"role": "assistant", "content": video_response})
|
219 |
|
220 |
def main():
|
221 |
+
st.markdown("##### GPT-4o Omni Model: Text, Audio, Image, & Video")
|
|
|
222 |
option = st.selectbox("Select an option", ("Text", "Image", "Audio", "Video"))
|
223 |
if option == "Text":
|
224 |
+
text_input = st.text_input("Enter your text:")
|
225 |
+
if text_input:
|
226 |
+
process_text(text_input)
|
227 |
elif option == "Image":
|
228 |
image_input = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
|
229 |
process_image(image_input)
|
|
|
233 |
elif option == "Video":
|
234 |
video_input = st.file_uploader("Upload a video file", type=["mp4"])
|
235 |
process_audio_and_video(video_input)
|
236 |
+
|
237 |
+
# File Gallery
|
238 |
+
all_files = glob.glob("*.md")
|
239 |
+
all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 10] # exclude files with short names
|
240 |
+
all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True) # sort by filename length which puts similar prompts together - consider making date and time of file optional.
|
241 |
+
|
242 |
+
st.sidebar.title("File Gallery")
|
243 |
+
for file in all_files:
|
244 |
+
with st.sidebar.expander(file):
|
245 |
+
with open(file, "r", encoding="utf-8") as f:
|
246 |
+
file_content = f.read()
|
247 |
+
st.code(file_content, language="markdown")
|
248 |
+
|
249 |
+
# ChatBot Entry
|
250 |
+
if prompt := st.chat_input("GPT-4o Multimodal ChatBot - What can I help you with?"):
|
251 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
252 |
+
with st.chat_message("user"):
|
253 |
+
st.markdown(prompt)
|
254 |
+
with st.chat_message("assistant"):
|
255 |
+
completion = client.chat.completions.create(
|
256 |
+
model=MODEL,
|
257 |
+
messages=st.session_state.messages,
|
258 |
+
stream=True
|
259 |
+
)
|
260 |
+
response = process_text2(text_input=prompt)
|
261 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
262 |
+
|
263 |
+
# Transcript to arxiv and client chat completion
|
264 |
+
filename = save_and_play_audio(audio_recorder)
|
265 |
+
if filename is not None:
|
266 |
+
transcript = transcribe_canary(filename)
|
267 |
+
|
268 |
+
# Search ArXiV and get the Summary and Reference Papers Listing
|
269 |
+
result = search_arxiv(transcript)
|
270 |
+
|
271 |
+
# Start chatbot with transcript:
|
272 |
+
st.session_state.messages.append({"role": "user", "content": transcript})
|
273 |
+
with st.chat_message("user"):
|
274 |
+
st.markdown(transcript)
|
275 |
+
with st.chat_message("assistant"):
|
276 |
+
completion = client.chat.completions.create(
|
277 |
+
model=MODEL,
|
278 |
+
messages=st.session_state.messages,
|
279 |
+
stream=True
|
280 |
+
)
|
281 |
+
response = process_text2(text_input=prompt)
|
282 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
283 |
|
284 |
if __name__ == "__main__":
|
285 |
+
main()
|