from setuptools import setup, find_packages from codecs import open from os import path here = path.abspath(path.dirname(__file__)) # Get the long description from the README file with open(path.join(here, "README.md"), encoding="utf-8") as f: long_description = f.read() with open(path.join(here, 'requirements.txt')) as f: install_requires = [x for x in f.read().splitlines() if len(x)] exec(open("gcvit/version.py").read()) setup( name="gcvit", version=__version__, description="Tensorflow 2.0 Implementation of GCViT: Global Context Vision Transformer. https://github.com/awsaf49/gcvit-tf", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/awsaf49/gcvit-tf", author="Awsaf", author_email="awsaf49@gmail.com", classifiers=[ # How mature is this project? Common values are # 3 - Alpha # 4 - Beta # 5 - Production/Stable "Development Status :: 3 - Alpha", "Intended Audience :: Developers", "Intended Audience :: Science/Research", "License :: OSI Approved :: Apache Software License", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Topic :: Scientific/Engineering", "Topic :: Scientific/Engineering :: Artificial Intelligence", "Topic :: Software Development", "Topic :: Software Development :: Libraries", "Topic :: Software Development :: Libraries :: Python Modules", ], # Note that this is a string of words separated by whitespace, not a list. keywords="tensorflow computer_vision image classification transformer", packages=find_packages(exclude=["tests"]), include_package_data=True, install_requires=install_requires, python_requires=">=3.6", license="MIT", )