Spaces:
Sleeping
Sleeping
File size: 1,558 Bytes
b23dced 1b6a720 9615c66 1b6a720 cefbbca 9a8b099 f6250c7 9a8b099 b23dced 3a15f10 b23dced 1905303 0420aaa 966415b ba6bb47 b23dced 966415b 9de6f34 ba6bb47 9de6f34 b23dced 2973318 0dc667c b23dced 0dc667c 1047b7a de5a93f 0dc667c 876676b 2125690 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
import streamlit as st
import torch
import torch.nn.functional as F
import transformers
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from datasets import load_dataset
import numpy as np
import pandas as pd
from io import StringIO
st.title('Can I Patent This?')
st.write("This model is tuned with all patent applications submitted in Jan 2016 in [the Harvard USPTO patent dataset](https://github.com/suzgunmirac/hupd)")
tuple_of_choices = ('patent_number', 'title', 'background', 'summary', 'description')
# steamlit form
option = st.selectbox('Which other sections would you like to view?', tuple_of_choices)
st.write('You selected:', option)
form = st.form(key='sentiment-form')
user_input = form.text_area(label = 'Enter your text', value = "I love steamlit and hugging face!")
submit = form.form_submit_button('Submit')
model_name = "ayethuzar/tuned-for-patentability"
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
test = [user_input]
if submit:
batch = tokenizer(test, padding = True, truncation = True, max_length = 512, return_tensors = "pt")
with torch.no_grad():
outputs = model(**batch)
#st.write(outputs)
predictions = F.softmax(outputs.logits, dim = 1)
result = "Patentability Score: " + str(predictions.numpy()[0][1])
html_str = f"""<style>p.a {{font: bold {28}px Courier;color:#1D5D9B;}}</style><p class="a">{result}</p>"""
st.markdown(html_str, unsafe_allow_html=True)
|