Spaces:
Sleeping
Sleeping
Update model.py
Browse files
model.py
CHANGED
|
@@ -1,28 +1,10 @@
|
|
| 1 |
-
import
|
| 2 |
-
import
|
| 3 |
-
import os
|
| 4 |
-
import requests
|
| 5 |
-
import json
|
| 6 |
-
import html # For escaping HTML characters
|
| 7 |
-
from bs4 import BeautifulSoup
|
| 8 |
-
from openai import OpenAI
|
| 9 |
|
| 10 |
-
|
| 11 |
-
client = OpenAI(
|
| 12 |
-
base_url="https://integrate.api.nvidia.com/v1",
|
| 13 |
-
api_key=os.environ.get("KEY")
|
| 14 |
-
)
|
| 15 |
-
|
| 16 |
-
def clean_text_output(text):
|
| 17 |
"""
|
| 18 |
-
|
| 19 |
"""
|
| 20 |
-
text = html.unescape(text) # Unescape HTML entities
|
| 21 |
-
soup = BeautifulSoup(text, 'html.parser') # Use BeautifulSoup to handle HTML tags
|
| 22 |
-
cleaned_text = soup.get_text(separator="\n").strip() # Remove tags and handle newlines
|
| 23 |
-
return cleaned_text
|
| 24 |
-
|
| 25 |
-
def modelFeedback(ats_score, resume_data, job_description):
|
| 26 |
input_prompt = f"""
|
| 27 |
You are now an ATS Score analyzer and given ATS Score is {int(ats_score * 100)}%.
|
| 28 |
Your task is to provide a comprehensive review and feedback based on the ATS score.
|
|
@@ -79,25 +61,25 @@ def modelFeedback(ats_score, resume_data, job_description):
|
|
| 79 |
IMPORTANT: The output should be as normal organised text not in any other format (don't give markdown text) and focus more on resume matching part that general resume review.
|
| 80 |
"""
|
| 81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
|
|
|
| 83 |
try:
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
temperature=0.01, # Lowering temperature for precise output
|
| 91 |
-
top_p=0.7, # Prioritize high-probability tokens
|
| 92 |
-
max_tokens=1500, # Allow longer content
|
| 93 |
)
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
feedback_text = response.choices[0].message.content.strip() # Corrected line
|
| 97 |
-
cleaned_feedback = clean_text_output(feedback_text)
|
| 98 |
-
|
| 99 |
return cleaned_feedback
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
return "Error: Unable to generate feedback."
|
|
|
|
| 1 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 2 |
+
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
+
def modelFeedback_direct(ats_score, resume_data, job_description):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
"""
|
| 6 |
+
Generate ATS feedback by loading model and tokenizer directly.
|
| 7 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
input_prompt = f"""
|
| 9 |
You are now an ATS Score analyzer and given ATS Score is {int(ats_score * 100)}%.
|
| 10 |
Your task is to provide a comprehensive review and feedback based on the ATS score.
|
|
|
|
| 61 |
IMPORTANT: The output should be as normal organised text not in any other format (don't give markdown text) and focus more on resume matching part that general resume review.
|
| 62 |
"""
|
| 63 |
|
| 64 |
+
# Load tokenizer and model
|
| 65 |
+
tokenizer = AutoTokenizer.from_pretrained("nvidia/Llama-3.1-Nemotron-70B-Instruct-HF")
|
| 66 |
+
model = AutoModelForCausalLM.from_pretrained("nvidia/Llama-3.1-Nemotron-70B-Instruct-HF")
|
| 67 |
+
|
| 68 |
+
# Tokenize the input
|
| 69 |
+
inputs = tokenizer.encode(input_prompt, return_tensors="pt")
|
| 70 |
|
| 71 |
+
# Generate the response
|
| 72 |
try:
|
| 73 |
+
outputs = model.generate(
|
| 74 |
+
inputs,
|
| 75 |
+
max_length=1500,
|
| 76 |
+
temperature=0.01,
|
| 77 |
+
top_p=0.7,
|
| 78 |
+
pad_token_id=tokenizer.eos_token_id
|
|
|
|
|
|
|
|
|
|
| 79 |
)
|
| 80 |
+
response_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 81 |
+
cleaned_feedback = clean_text_output(response_text)
|
|
|
|
|
|
|
|
|
|
| 82 |
return cleaned_feedback
|
| 83 |
+
except Exception as e:
|
| 84 |
+
print(f"Model generation error: {e}")
|
| 85 |
+
return "Error: Unable to generate feedback."
|
|
|