Spaces:
Sleeping
Sleeping
Update model.py
Browse files
model.py
CHANGED
@@ -1,8 +1,21 @@
|
|
1 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
2 |
import os
|
3 |
import torch
|
4 |
-
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
def modelFeedback(ats_score, resume_data, job_description):
|
7 |
"""
|
8 |
Generate ATS feedback by utilizing a pre-configured pipeline.
|
@@ -32,28 +45,19 @@ def modelFeedback(ats_score, resume_data, job_description):
|
|
32 |
#### Job Description: {job_description}
|
33 |
"""
|
34 |
|
35 |
-
# Load the tokenizer and model
|
36 |
-
huggingface_token = os.environ.get("KEY2")
|
37 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
38 |
-
"meta-llama/Llama-3.2-1B",
|
39 |
-
use_auth_token=huggingface_token
|
40 |
-
)
|
41 |
-
model = AutoModelForCausalLM.from_pretrained(
|
42 |
-
"meta-llama/Llama-3.2-1B",
|
43 |
-
use_auth_token=huggingface_token
|
44 |
-
)
|
45 |
-
|
46 |
try:
|
47 |
# Tokenize the input
|
48 |
-
input_ids = tokenizer.encode(input_prompt, return_tensors="pt")
|
49 |
|
50 |
-
#
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
|
|
57 |
|
58 |
# Decode the output
|
59 |
response_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
|
|
1 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
2 |
import os
|
3 |
import torch
|
4 |
+
|
5 |
+
# Check if CUDA is available for faster inference
|
6 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
7 |
+
|
8 |
+
# Load the tokenizer and model once, outside of the function
|
9 |
+
huggingface_token = os.environ.get("KEY2")
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
11 |
+
"meta-llama/Llama-3.2-1B",
|
12 |
+
use_auth_token=huggingface_token
|
13 |
+
)
|
14 |
+
model = AutoModelForCausalLM.from_pretrained(
|
15 |
+
"meta-llama/Llama-3.2-1B",
|
16 |
+
use_auth_token=huggingface_token
|
17 |
+
).to(device)
|
18 |
+
|
19 |
def modelFeedback(ats_score, resume_data, job_description):
|
20 |
"""
|
21 |
Generate ATS feedback by utilizing a pre-configured pipeline.
|
|
|
45 |
#### Job Description: {job_description}
|
46 |
"""
|
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
try:
|
49 |
# Tokenize the input
|
50 |
+
input_ids = tokenizer.encode(input_prompt, return_tensors="pt").to(device)
|
51 |
|
52 |
+
# Disable gradient calculation for faster inference
|
53 |
+
with torch.no_grad():
|
54 |
+
# Generate the output
|
55 |
+
output = model.generate(
|
56 |
+
input_ids,
|
57 |
+
max_length=1500,
|
58 |
+
temperature=0.01,
|
59 |
+
pad_token_id=tokenizer.eos_token_id # Ensure padding works properly
|
60 |
+
)
|
61 |
|
62 |
# Decode the output
|
63 |
response_text = tokenizer.decode(output[0], skip_special_tokens=True)
|