import streamlit as st import os api_token = os.environ.get("Key2") from langchain_community.vectorstores import FAISS from langchain_community.document_loaders import PyPDFLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.llms import HuggingFaceEndpoint from langchain.chains import ConversationalRetrievalChain from langchain.memory import ConversationBufferMemory list_llm = ["meta-llama/Llama-3.2-3B-Instruct", "mistralai/Mistral-7B-Instruct-v0.2"] # Load and split PDF document def load_doc(list_file_path): loaders = [PyPDFLoader(x) for x in list_file_path] pages = [] for loader in loaders: pages.extend(loader.load()) text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=64) return text_splitter.split_documents(pages) # Create vector database def create_db(splits): embeddings = HuggingFaceEmbeddings() return FAISS.from_documents(splits, embeddings) # Initialize langchain LLM chain def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db): llm = HuggingFaceEndpoint( repo_id=llm_model, huggingfacehub_api_token=api_token, temperature=temperature, max_new_tokens=max_tokens, top_k=top_k, ) memory = ConversationBufferMemory(memory_key="chat_history", output_key='answer', return_messages=True) retriever = vector_db.as_retriever() return ConversationalRetrievalChain.from_llm( llm, retriever=retriever, chain_type="stuff", memory=memory, return_source_documents=True, verbose=False, ) st.title("RAG PDF Chatbot") uploaded_files = st.file_uploader("Upload PDF files", accept_multiple_files=True, type="pdf") if uploaded_files: # Save uploaded files to local disk file_paths = [] for uploaded_file in uploaded_files: file_path = os.path.join("temp", uploaded_file.name) os.makedirs("temp", exist_ok=True) with open(file_path, "wb") as f: f.write(uploaded_file.getbuffer()) file_paths.append(file_path) st.session_state["doc_splits"] = load_doc(file_paths) st.success("Documents successfully loaded and split!") if 'vector_db' not in st.session_state and 'doc_splits' in st.session_state: st.session_state['vector_db'] = create_db(st.session_state['doc_splits']) llm_option = st.selectbox("Select LLM", list_llm) temperature = st.slider("Temperature", 0.01, 1.0, 0.5, 0.1) max_tokens = st.slider("Max Tokens", 128, 9192, 4096, 128) top_k = st.slider("Top K", 1, 10, 3, 1) if 'qa_chain' not in st.session_state and 'vector_db' in st.session_state: st.session_state['qa_chain'] = initialize_llmchain(llm_option, temperature, max_tokens, top_k, st.session_state['vector_db']) if "chat_history" not in st.session_state: st.session_state["chat_history"] = [] user_input = st.text_input("Ask a question") if st.button("Submit") and user_input: qa_chain = st.session_state['qa_chain'] response = qa_chain.invoke({"question": user_input, "chat_history": st.session_state["chat_history"]}) st.session_state["chat_history"].append((user_input, response["answer"])) st.write("### Response:") st.write(response["answer"]) st.write("### Sources:") for doc in response["source_documents"][:3]: st.write(f"Page {doc.metadata['page'] + 1}: {doc.page_content[:300]}...") st.write("### Chat History") for user_msg, bot_msg in st.session_state["chat_history"]: st.text(f"User: {user_msg}") st.text(f"Assistant: {bot_msg}")