Spaces:
Running
Running
app.py
Browse files
app.py
CHANGED
@@ -1,223 +1,293 @@
|
|
1 |
-
|
2 |
-
subprocess.run(["pip", "install", "faiss-cpu"], check=True)
|
3 |
import gradio as gr
|
4 |
import wikipedia
|
5 |
import numpy as np
|
6 |
-
import faiss
|
7 |
-
from gtts import gTTS
|
8 |
import tempfile
|
|
|
|
|
|
|
|
|
9 |
from langdetect import detect
|
10 |
-
import speech_recognition as sr
|
11 |
from pydub import AudioSegment
|
12 |
-
from transformers import pipeline
|
13 |
-
from sentence_transformers import SentenceTransformer
|
14 |
-
import os
|
15 |
from pydub.silence import split_on_silence
|
16 |
-
import
|
|
|
|
|
|
|
|
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
|
20 |
-
models = {
|
21 |
-
'translator': pipeline('translation', model='Helsinki-NLP/opus-mt-mul-en'),
|
22 |
-
'answer_gen': pipeline('text2text-generation', model='google/flan-t5-base'),
|
23 |
-
'encoder': SentenceTransformer('paraphrase-multilingual-MiniLM-L12-v2')
|
24 |
-
}
|
25 |
|
26 |
-
#
|
27 |
-
|
28 |
-
models
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
-
|
32 |
-
if src == tgt: return text
|
33 |
-
if src != 'en': text = models['translator'](text)[0]['translation_text']
|
34 |
-
if f'en_to_{tgt}' in models: return models[f'en_to_{tgt}'](text)[0]['translation_text']
|
35 |
-
return text
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
-
|
48 |
-
recognizer = sr.Recognizer()
|
49 |
-
sound = AudioSegment.from_file(audio_path)
|
50 |
-
chunks = split_on_silence(sound,
|
51 |
-
min_silence_len=500,
|
52 |
-
silence_thresh=sound.dBFS-14,
|
53 |
-
keep_silence=500
|
54 |
-
)
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
chunk_path = tempfile.mktemp(suffix='.wav')
|
59 |
-
chunk.export(chunk_path, format="wav")
|
60 |
-
with sr.AudioFile(chunk_path) as source:
|
61 |
-
audio = recognizer.record(source)
|
62 |
-
try:
|
63 |
-
text = recognizer.recognize_google(audio)
|
64 |
-
full_text += f" {text}"
|
65 |
-
except:
|
66 |
-
continue
|
67 |
-
os.unlink(chunk_path)
|
68 |
-
|
69 |
-
return full_text.strip() if full_text else None
|
70 |
-
|
71 |
-
def get_wikipedia_content(topic):
|
72 |
try:
|
73 |
wikipedia.set_lang('en')
|
74 |
try:
|
75 |
page = wikipedia.page(topic, auto_suggest=False)
|
76 |
-
|
77 |
except wikipedia.exceptions.DisambiguationError as e:
|
78 |
page = wikipedia.page(e.options[0])
|
79 |
-
|
80 |
except Exception as e:
|
81 |
print(f"Wikipedia error: {e}")
|
82 |
-
return None
|
83 |
-
|
84 |
-
def generate_response(text, topic, lang):
|
85 |
-
context = get_wikipedia_content(topic)
|
86 |
-
if not context:
|
87 |
return "Could not find information. Please try another topic.", None
|
88 |
|
89 |
prompt = f"Context: {context}\nQuestion: {text}\nAnswer:"
|
90 |
answer = models['answer_gen'](prompt, max_length=200)[0]['generated_text']
|
91 |
translated = translate(answer, 'en', lang) if lang != 'en' else answer
|
92 |
audio_path = text_to_speech(translated, lang)
|
93 |
-
|
94 |
return translated, audio_path
|
95 |
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
if not text.strip():
|
106 |
-
chat_history.append(("", "Please enter a question
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
return chat_history, "", None
|
108 |
-
|
109 |
response, audio_output = generate_response(text, topic, lang)
|
110 |
chat_history.append((text, response))
|
111 |
-
|
112 |
return chat_history, "", audio_output
|
113 |
|
114 |
-
#
|
115 |
-
|
116 |
-
.
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
.
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
border: 2px solid #00008b !important;
|
130 |
-
color: white !important;
|
131 |
-
border-radius: 6px !important;
|
132 |
-
}
|
133 |
-
.gr-button:hover {
|
134 |
-
background-color: #1a75ff !important;
|
135 |
-
}
|
136 |
-
.gr-chatbot {
|
137 |
-
background-color: #e6f2ff !important;
|
138 |
-
border: 2px solid #00008b !important;
|
139 |
-
border-radius: 8px !important;
|
140 |
-
}
|
141 |
-
.gr-textbox, .gr-dropdown, .gr-audio {
|
142 |
-
background-color: #e6f2ff !important;
|
143 |
-
border: 2px solid #00008b !important;
|
144 |
-
border-radius: 6px !important;
|
145 |
-
}
|
146 |
-
.welcome-header {
|
147 |
-
text-align: center;
|
148 |
-
color: #00008b !important;
|
149 |
-
margin-bottom: 20px;
|
150 |
-
}
|
151 |
-
.welcome-message {
|
152 |
-
background-color: #e6f2ff;
|
153 |
-
padding: 20px;
|
154 |
-
border-radius: 10px;
|
155 |
-
border: 2px solid #00008b;
|
156 |
-
margin-bottom: 20px;
|
157 |
-
}
|
158 |
-
.avatar {
|
159 |
-
width: 80px;
|
160 |
-
height: 80px;
|
161 |
-
margin: 0 auto;
|
162 |
-
display: block;
|
163 |
-
}
|
164 |
-
"""
|
165 |
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
</div>
|
183 |
"""
|
184 |
|
185 |
-
|
186 |
-
|
187 |
-
gr.HTML(
|
188 |
-
|
189 |
-
# Main interface
|
190 |
with gr.Row():
|
191 |
with gr.Column(scale=1):
|
192 |
-
audio_input = gr.Audio(
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
interactive=True
|
197 |
-
)
|
198 |
-
topic_input = gr.Textbox(
|
199 |
-
"Artificial Intelligence",
|
200 |
-
label="π Wikipedia Topic"
|
201 |
-
)
|
202 |
-
lang_input = gr.Dropdown(
|
203 |
-
["en", "fr", "es", "zh", "ar"],
|
204 |
-
value="en",
|
205 |
-
label="π Output Language"
|
206 |
-
)
|
207 |
-
|
208 |
with gr.Column(scale=2):
|
209 |
chatbot = gr.Chatbot(label="Conversation")
|
210 |
-
text_input = gr.Textbox(
|
211 |
-
placeholder="Type your question here...",
|
212 |
-
label="βοΈ Or type here"
|
213 |
-
)
|
214 |
with gr.Row():
|
215 |
clear_btn = gr.Button("ποΈ Clear Chat")
|
216 |
submit_btn = gr.Button("π Submit", variant="primary")
|
217 |
-
|
218 |
audio_output = gr.Audio(label="π Answer", visible=True)
|
219 |
-
|
220 |
-
# Event handlers
|
221 |
submit_btn.click(
|
222 |
handle_interaction,
|
223 |
inputs=[audio_input, text_input, topic_input, lang_input, chatbot],
|
@@ -228,9 +298,7 @@ with gr.Blocks(css=custom_css, title="π Multilingual AI Assistant") as demo:
|
|
228 |
inputs=[audio_input, text_input, topic_input, lang_input, chatbot],
|
229 |
outputs=[chatbot, text_input, audio_output]
|
230 |
)
|
231 |
-
clear_btn.click(
|
232 |
-
lambda: ([], "", None),
|
233 |
-
outputs=[chatbot, text_input, audio_output]
|
234 |
-
)
|
235 |
|
236 |
-
|
|
|
|
1 |
+
# app.py
|
|
|
2 |
import gradio as gr
|
3 |
import wikipedia
|
4 |
import numpy as np
|
|
|
|
|
5 |
import tempfile
|
6 |
+
import os
|
7 |
+
import time
|
8 |
+
from datetime import datetime, timedelta
|
9 |
+
from gtts import gTTS
|
10 |
from langdetect import detect
|
|
|
11 |
from pydub import AudioSegment
|
|
|
|
|
|
|
12 |
from pydub.silence import split_on_silence
|
13 |
+
import speech_recognition as sr
|
14 |
+
from sentence_transformers import SentenceTransformer
|
15 |
+
from transformers import pipeline
|
16 |
+
import re
|
17 |
+
import torch
|
18 |
|
19 |
+
# --- USER MANAGEMENT SYSTEM ---
|
20 |
+
class UserManager:
|
21 |
+
def __init__(self):
|
22 |
+
self.user_data = {}
|
23 |
+
self.max_warnings = 1
|
24 |
+
self.block_duration = timedelta(days=30)
|
25 |
+
|
26 |
+
def get_user_status(self, user_id):
|
27 |
+
if user_id not in self.user_data:
|
28 |
+
return "active"
|
29 |
+
if self.user_data[user_id].get('permanently_banned', False):
|
30 |
+
return "banned"
|
31 |
+
if 'blocked_until' in self.user_data[user_id]:
|
32 |
+
if datetime.now() < self.user_data[user_id]['blocked_until']:
|
33 |
+
return "blocked"
|
34 |
+
del self.user_data[user_id]['blocked_until']
|
35 |
+
return "active"
|
36 |
+
|
37 |
+
def add_warning(self, user_id, violation_type):
|
38 |
+
if user_id not in self.user_data:
|
39 |
+
self.user_data[user_id] = {'warnings': 1, 'flags': [violation_type]}
|
40 |
+
else:
|
41 |
+
self.user_data[user_id]['warnings'] += 1
|
42 |
+
self.user_data[user_id]['flags'].append(violation_type)
|
43 |
+
|
44 |
+
if self.user_data[user_id]['warnings'] > self.max_warnings:
|
45 |
+
self.user_data[user_id]['blocked_until'] = datetime.now() + self.block_duration
|
46 |
+
return "blocked"
|
47 |
+
return "warned"
|
48 |
|
49 |
+
user_manager = UserManager()
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
+
# --- MODEL INITIALIZATION ---
|
52 |
+
def load_models():
|
53 |
+
models = {
|
54 |
+
'translator': pipeline('translation', model='Helsinki-NLP/opus-mt-mul-en'),
|
55 |
+
'answer_gen': pipeline('text2text-generation', model='google/flan-t5-base'),
|
56 |
+
'encoder': SentenceTransformer('paraphrase-multilingual-MiniLM-L12-v2'),
|
57 |
+
'toxic-bert': pipeline("text-classification", model="unitary/toxic-bert"),
|
58 |
+
'roberta-hate': pipeline("text-classification", model="facebook/roberta-hate-speech-dynabench-r4-target")
|
59 |
+
}
|
60 |
+
|
61 |
+
for lang in ['fr', 'ar', 'zh', 'es']:
|
62 |
+
models[f'en_to_{lang}'] = pipeline(f'translation_en_to_{lang}', model=f'Helsinki-NLP/opus-mt-en-{lang}')
|
63 |
+
|
64 |
+
return models
|
65 |
|
66 |
+
models = load_models()
|
|
|
|
|
|
|
|
|
67 |
|
68 |
+
# --- UNIVERSAL HATE SPEECH DETECTION ---
|
69 |
+
class HateSpeechDetector:
|
70 |
+
def __init__(self):
|
71 |
+
self.keyword_banks = {
|
72 |
+
'racial': ['nigger', 'chink', 'spic', 'kike', 'gook', 'wetback'],
|
73 |
+
'gender': ['fag', 'dyke', 'tranny', 'whore', 'slut', 'bitch'],
|
74 |
+
'violence': ['kill', 'murder', 'harm', 'hurt', 'abuse', 'torture'],
|
75 |
+
'general': ['scum', 'vermin', 'subhuman', 'untermensch']
|
76 |
+
}
|
77 |
+
|
78 |
+
self.patterns = [
|
79 |
+
(r'\b(all|every)\s\w+\s(should|must)\s(die|burn)', 'group violence'),
|
80 |
+
(r'\b(how to|ways? to)\s(kill|harm|hurt)', 'harm instructions'),
|
81 |
+
(r'[!@#$%^&*]igg[!@#$%^&*]', 'coded racial slur')
|
82 |
+
]
|
83 |
+
|
84 |
+
def detect(self, text):
|
85 |
+
text_lower = text.lower()
|
86 |
+
violations = []
|
87 |
+
|
88 |
+
# Keyword detection
|
89 |
+
for category, keywords in self.keyword_banks.items():
|
90 |
+
found = [kw for kw in keywords if kw in text_lower]
|
91 |
+
if found:
|
92 |
+
violations.append(f"{category} terms: {', '.join(found[:3])}")
|
93 |
+
|
94 |
+
# Pattern detection
|
95 |
+
for pattern, desc in self.patterns:
|
96 |
+
if re.search(pattern, text_lower):
|
97 |
+
violations.append(f"pattern: {desc}")
|
98 |
+
|
99 |
+
# Model detection
|
100 |
+
try:
|
101 |
+
toxic_result = models['toxic-bert'](text)[0]
|
102 |
+
if toxic_result['label'].lower() in ['toxic', 'hate'] and toxic_result['score'] > 0.7:
|
103 |
+
violations.append(f"toxic-bert: {toxic_result['label']} ({toxic_result['score']:.2f})")
|
104 |
+
|
105 |
+
hate_result = models['roberta-hate'](text)[0]
|
106 |
+
if hate_result['label'].lower() in ['hate', 'offensive'] and hate_result['score'] > 0.7:
|
107 |
+
violations.append(f"roberta-hate: {hate_result['label']} ({hate_result['score']:.2f})")
|
108 |
+
except Exception as e:
|
109 |
+
print(f"Model error: {e}")
|
110 |
+
|
111 |
+
return violations if violations else None
|
112 |
|
113 |
+
hate_detector = HateSpeechDetector()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
+
# --- RESPONSE GENERATION ---
|
116 |
+
def generate_response(text, topic, lang):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
try:
|
118 |
wikipedia.set_lang('en')
|
119 |
try:
|
120 |
page = wikipedia.page(topic, auto_suggest=False)
|
121 |
+
context = page.summary[:1000]
|
122 |
except wikipedia.exceptions.DisambiguationError as e:
|
123 |
page = wikipedia.page(e.options[0])
|
124 |
+
context = page.summary[:1000]
|
125 |
except Exception as e:
|
126 |
print(f"Wikipedia error: {e}")
|
|
|
|
|
|
|
|
|
|
|
127 |
return "Could not find information. Please try another topic.", None
|
128 |
|
129 |
prompt = f"Context: {context}\nQuestion: {text}\nAnswer:"
|
130 |
answer = models['answer_gen'](prompt, max_length=200)[0]['generated_text']
|
131 |
translated = translate(answer, 'en', lang) if lang != 'en' else answer
|
132 |
audio_path = text_to_speech(translated, lang)
|
|
|
133 |
return translated, audio_path
|
134 |
|
135 |
+
# --- WARNING MESSAGES ---
|
136 |
+
def create_warning_message(violations):
|
137 |
+
return gr.HTML(f"""
|
138 |
+
<div style='
|
139 |
+
border: 2px solid #ff0000;
|
140 |
+
border-radius: 5px;
|
141 |
+
padding: 10px;
|
142 |
+
background-color: #fff0f0;
|
143 |
+
margin: 10px 0;
|
144 |
+
'>
|
145 |
+
<div style='color: #ff0000; font-weight: bold;'>
|
146 |
+
β οΈ WARNING: Violation Detected
|
147 |
+
</div>
|
148 |
+
<div style='margin-top: 8px;'>
|
149 |
+
Your message contains prohibited content
|
150 |
+
</div>
|
151 |
+
<div style='margin-top: 8px; font-size: 0.9em;'>
|
152 |
+
<b>Reason:</b> {', '.join(violations[:2])}
|
153 |
+
</div>
|
154 |
+
</div>
|
155 |
+
""")
|
156 |
|
157 |
+
def create_blocked_message():
|
158 |
+
return gr.HTML("""
|
159 |
+
<div style='
|
160 |
+
border: 2px solid #990000;
|
161 |
+
border-radius: 5px;
|
162 |
+
padding: 10px;
|
163 |
+
background-color: #ffebee;
|
164 |
+
'>
|
165 |
+
β ACCOUNT TEMPORARILY SUSPENDED
|
166 |
+
</div>
|
167 |
+
""")
|
168 |
+
|
169 |
+
# --- MAIN HANDLER ---
|
170 |
+
def handle_interaction(audio, text, topic, lang, chat_history, request: gr.Request):
|
171 |
+
user_id = request.client.host if request else "default_user"
|
172 |
+
status = user_manager.get_user_status(user_id)
|
173 |
+
|
174 |
+
if status == "banned":
|
175 |
+
return chat_history.append(("", "β Account permanently banned")), "", None
|
176 |
+
if status == "blocked":
|
177 |
+
return chat_history.append(("", create_blocked_message())), "", None
|
178 |
+
|
179 |
+
if audio:
|
180 |
+
text = process_audio(audio) or text
|
181 |
+
|
182 |
if not text.strip():
|
183 |
+
return chat_history.append(("", "βοΈ Please enter a question")), "", None
|
184 |
+
|
185 |
+
violations = hate_detector.detect(text)
|
186 |
+
if violations:
|
187 |
+
action = user_manager.add_warning(user_id, violations[0])
|
188 |
+
if action == "warned":
|
189 |
+
chat_history.append((text, create_warning_message(violations)))
|
190 |
+
elif action == "blocked":
|
191 |
+
chat_history.append(("", create_blocked_message()))
|
192 |
return chat_history, "", None
|
193 |
+
|
194 |
response, audio_output = generate_response(text, topic, lang)
|
195 |
chat_history.append((text, response))
|
|
|
196 |
return chat_history, "", audio_output
|
197 |
|
198 |
+
# --- AUDIO PROCESSING ---
|
199 |
+
def process_audio(audio_path):
|
200 |
+
recognizer = sr.Recognizer()
|
201 |
+
sound = AudioSegment.from_file(audio_path)
|
202 |
+
chunks = split_on_silence(sound, min_silence_len=500, silence_thresh=sound.dBFS-14)
|
203 |
+
|
204 |
+
full_text = ""
|
205 |
+
for chunk in chunks:
|
206 |
+
with tempfile.NamedTemporaryFile(suffix='.wav') as f:
|
207 |
+
chunk.export(f.name, format="wav")
|
208 |
+
with sr.AudioFile(f.name) as source:
|
209 |
+
audio = recognizer.record(source)
|
210 |
+
try: full_text += recognizer.recognize_google(audio) + " "
|
211 |
+
except: continue
|
212 |
+
return full_text.strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
|
214 |
+
def text_to_speech(text, lang):
|
215 |
+
try:
|
216 |
+
tts = gTTS(text=text, lang=lang)
|
217 |
+
with tempfile.NamedTemporaryFile(suffix='.mp3', delete=False) as f:
|
218 |
+
tts.save(f.name)
|
219 |
+
return f.name
|
220 |
+
except Exception as e:
|
221 |
+
print(f"TTS Error: {e}")
|
222 |
+
return None
|
223 |
+
|
224 |
+
def translate(text, src, tgt):
|
225 |
+
if src == tgt: return text
|
226 |
+
if src != 'en': text = models['translator'](text)[0]['translation_text']
|
227 |
+
if f'en_to_{tgt}' in models: return models[f'en_to_{tgt}'](text)[0]['translation_text']
|
228 |
+
return text
|
229 |
+
|
230 |
+
# --- INTERACTIVE DESCRIPTION ---
|
231 |
+
description_html = """
|
232 |
+
<div style="font-family: 'Arial', sans-serif; max-width: 800px; margin: 0 auto;">
|
233 |
+
<div style="text-align: center; margin-bottom: 30px;">
|
234 |
+
<img src="https://i.imgur.com/6wBs5mO.png" style="width: 120px; height: 120px; border-radius: 50%; border: 3px solid #00008b;">
|
235 |
+
<h1 style="color: #00008b; margin-top: 15px;">π Multilingual AI Assistant</h1>
|
236 |
+
<p style="color: #555;">Powered by Transformers and Gradio</p>
|
237 |
+
</div>
|
238 |
+
|
239 |
+
<div style="background-color: #e6f2ff; padding: 25px; border-radius: 10px; border: 2px solid #00008b; margin-bottom: 20px;">
|
240 |
+
<h2 style="color: #00008b; margin-top: 0;">β¨ Features</h2>
|
241 |
+
<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(200px, 1fr)); gap: 15px;">
|
242 |
+
<div style="background: white; padding: 15px; border-radius: 8px;">
|
243 |
+
<h3 style="margin-top: 0;">π Wikipedia Knowledge</h3>
|
244 |
+
<p>Answers questions using Wikipedia content</p>
|
245 |
+
</div>
|
246 |
+
<div style="background: white; padding: 15px; border-radius: 8px;">
|
247 |
+
<h3 style="margin-top: 0;">π£οΈ Voice Interaction</h3>
|
248 |
+
<p>Speak or type your questions</p>
|
249 |
+
</div>
|
250 |
+
<div style="background: white; padding: 15px; border-radius: 8px;">
|
251 |
+
<h3 style="margin-top: 0;">π 5 Languages</h3>
|
252 |
+
<p>English, French, Spanish, Chinese, Arabic</p>
|
253 |
+
</div>
|
254 |
+
<div style="background: white; padding: 15px; border-radius: 8px;">
|
255 |
+
<h3 style="margin-top: 0;">π‘οΈ Content Moderation</h3>
|
256 |
+
<p>Automated hate speech detection</p>
|
257 |
+
</div>
|
258 |
+
</div>
|
259 |
+
</div>
|
260 |
+
|
261 |
+
<div style="background-color: #fff0f0; padding: 25px; border-radius: 10px; border: 2px solid #ff0000; margin-bottom: 20px;">
|
262 |
+
<h2 style="color: #ff0000; margin-top: 0;">π« Restricted Content</h2>
|
263 |
+
<ul>
|
264 |
+
<li>Hate speech or discrimination</li>
|
265 |
+
<li>Violent or harmful content</li>
|
266 |
+
<li>Personal/medical/legal advice</li>
|
267 |
+
</ul>
|
268 |
+
</div>
|
269 |
</div>
|
270 |
"""
|
271 |
|
272 |
+
# --- GRADIO INTERFACE ---
|
273 |
+
with gr.Blocks(title="π Multilingual AI Assistant") as demo:
|
274 |
+
gr.HTML(description_html)
|
275 |
+
|
|
|
276 |
with gr.Row():
|
277 |
with gr.Column(scale=1):
|
278 |
+
audio_input = gr.Audio(sources=["microphone", "upload"], type="filepath", label="π€ Speak or upload audio")
|
279 |
+
topic_input = gr.Textbox("Artificial Intelligence", label="π Wikipedia Topic")
|
280 |
+
lang_input = gr.Dropdown(["en", "fr", "es", "zh", "ar"], value="en", label="π Output Language")
|
281 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
282 |
with gr.Column(scale=2):
|
283 |
chatbot = gr.Chatbot(label="Conversation")
|
284 |
+
text_input = gr.Textbox(placeholder="Type your question...", label="βοΈ Or type here")
|
|
|
|
|
|
|
285 |
with gr.Row():
|
286 |
clear_btn = gr.Button("ποΈ Clear Chat")
|
287 |
submit_btn = gr.Button("π Submit", variant="primary")
|
288 |
+
|
289 |
audio_output = gr.Audio(label="π Answer", visible=True)
|
290 |
+
|
|
|
291 |
submit_btn.click(
|
292 |
handle_interaction,
|
293 |
inputs=[audio_input, text_input, topic_input, lang_input, chatbot],
|
|
|
298 |
inputs=[audio_input, text_input, topic_input, lang_input, chatbot],
|
299 |
outputs=[chatbot, text_input, audio_output]
|
300 |
)
|
301 |
+
clear_btn.click(lambda: ([], "", None), outputs=[chatbot, text_input, audio_output])
|
|
|
|
|
|
|
302 |
|
303 |
+
if __name__ == "__main__":
|
304 |
+
demo.launch(share=True)
|