Update app.py
Browse files
app.py
CHANGED
|
@@ -43,6 +43,8 @@ class ModelRecommender(nn.Module):
|
|
| 43 |
output = self.combined(combined)
|
| 44 |
return output
|
| 45 |
|
|
|
|
|
|
|
| 46 |
# Load model dan dataset info
|
| 47 |
def load_model():
|
| 48 |
# Load dataset info
|
|
@@ -61,13 +63,13 @@ def load_model():
|
|
| 61 |
|
| 62 |
return model, model_names, device
|
| 63 |
|
| 64 |
-
|
|
|
|
|
|
|
| 65 |
def predict_image(image):
|
| 66 |
-
# Load model if not loaded
|
| 67 |
if not hasattr(predict_image, "model"):
|
| 68 |
predict_image.model, predict_image.model_names, predict_image.device = load_model()
|
| 69 |
|
| 70 |
-
# Preprocess image
|
| 71 |
transform = transforms.Compose([
|
| 72 |
transforms.Resize((224, 224)),
|
| 73 |
transforms.ToTensor(),
|
|
@@ -78,29 +80,85 @@ def predict_image(image):
|
|
| 78 |
image_tensor = transform(image).unsqueeze(0).to(predict_image.device)
|
| 79 |
dummy_text_features = torch.zeros(1, 768).to(predict_image.device)
|
| 80 |
|
| 81 |
-
# Get
|
| 82 |
with torch.no_grad():
|
|
|
|
| 83 |
outputs = predict_image.model(image_tensor, dummy_text_features)
|
| 84 |
-
|
| 85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
|
| 87 |
-
|
| 88 |
-
results = []
|
| 89 |
-
for prob, idx in zip(top5_prob[0], top5_indices[0]):
|
| 90 |
-
model_name = predict_image.model_names[idx.item()]
|
| 91 |
-
confidence = f"{prob.item():.2%}"
|
| 92 |
-
results.append(f"Model: {model_name}\nConfidence: {confidence}")
|
| 93 |
|
| 94 |
-
return
|
| 95 |
|
| 96 |
# Gradio Interface
|
| 97 |
demo = gr.Interface(
|
| 98 |
fn=predict_image,
|
| 99 |
inputs=gr.Image(type="pil"),
|
| 100 |
-
outputs=gr.
|
| 101 |
title="Stable Diffusion Model Recommender",
|
| 102 |
description="Upload an AI-generated image to get model recommendations",
|
| 103 |
-
examples=[["example1.jpg"], ["example2.jpg"]]
|
| 104 |
)
|
| 105 |
|
| 106 |
demo.launch()
|
|
|
|
| 43 |
output = self.combined(combined)
|
| 44 |
return output
|
| 45 |
|
| 46 |
+
|
| 47 |
+
|
| 48 |
# Load model dan dataset info
|
| 49 |
def load_model():
|
| 50 |
# Load dataset info
|
|
|
|
| 63 |
|
| 64 |
return model, model_names, device
|
| 65 |
|
| 66 |
+
def calculate_euclidean_distance(features1, features2):
|
| 67 |
+
return np.linalg.norm(features1 - features2)
|
| 68 |
+
|
| 69 |
def predict_image(image):
|
|
|
|
| 70 |
if not hasattr(predict_image, "model"):
|
| 71 |
predict_image.model, predict_image.model_names, predict_image.device = load_model()
|
| 72 |
|
|
|
|
| 73 |
transform = transforms.Compose([
|
| 74 |
transforms.Resize((224, 224)),
|
| 75 |
transforms.ToTensor(),
|
|
|
|
| 80 |
image_tensor = transform(image).unsqueeze(0).to(predict_image.device)
|
| 81 |
dummy_text_features = torch.zeros(1, 768).to(predict_image.device)
|
| 82 |
|
| 83 |
+
# Get image features
|
| 84 |
with torch.no_grad():
|
| 85 |
+
img_features = predict_image.model.cnn(image_tensor).cpu().numpy()
|
| 86 |
outputs = predict_image.model(image_tensor, dummy_text_features)
|
| 87 |
+
top5_prob, top5_indices = torch.topk(outputs, 5)
|
| 88 |
+
|
| 89 |
+
# Create HTML gallery
|
| 90 |
+
html_output = """
|
| 91 |
+
<style>
|
| 92 |
+
.model-gallery {
|
| 93 |
+
display: grid;
|
| 94 |
+
grid-template-columns: repeat(auto-fill, minmax(250px, 1fr));
|
| 95 |
+
gap: 20px;
|
| 96 |
+
padding: 20px;
|
| 97 |
+
}
|
| 98 |
+
.model-card {
|
| 99 |
+
border: 1px solid #ddd;
|
| 100 |
+
border-radius: 8px;
|
| 101 |
+
overflow: hidden;
|
| 102 |
+
background: white;
|
| 103 |
+
box-shadow: 0 2px 5px rgba(0,0,0,0.1);
|
| 104 |
+
}
|
| 105 |
+
.model-img {
|
| 106 |
+
width: 100%;
|
| 107 |
+
height: 200px;
|
| 108 |
+
object-fit: cover;
|
| 109 |
+
}
|
| 110 |
+
.model-info {
|
| 111 |
+
padding: 15px;
|
| 112 |
+
}
|
| 113 |
+
.model-name {
|
| 114 |
+
color: #2563eb;
|
| 115 |
+
text-decoration: none;
|
| 116 |
+
font-weight: bold;
|
| 117 |
+
font-size: 1.1em;
|
| 118 |
+
margin-bottom: 8px;
|
| 119 |
+
display: block;
|
| 120 |
+
}
|
| 121 |
+
.model-name:hover {
|
| 122 |
+
text-decoration: underline;
|
| 123 |
+
}
|
| 124 |
+
.distance {
|
| 125 |
+
color: #666;
|
| 126 |
+
font-size: 0.9em;
|
| 127 |
+
}
|
| 128 |
+
</style>
|
| 129 |
+
<div class="model-gallery">
|
| 130 |
+
"""
|
| 131 |
+
|
| 132 |
+
# Generate cards for each model
|
| 133 |
+
for idx, (score, model_idx) in enumerate(zip(top5_prob[0], top5_indices[0])):
|
| 134 |
+
model_name = predict_image.model_names[model_idx.item()]
|
| 135 |
+
distance = calculate_euclidean_distance(img_features[0],
|
| 136 |
+
torch.randn(512).numpy()) # Placeholder for actual features
|
| 137 |
+
|
| 138 |
+
civitai_url = f"https://civitai.com/search/models?sortBy=models_v9&query={model_name}"
|
| 139 |
+
|
| 140 |
+
html_output += f"""
|
| 141 |
+
<div class="model-card">
|
| 142 |
+
<img class="model-img" src="data:image/svg+xml,<svg xmlns='http://www.w3.org/2000/svg' width='250' height='200' viewBox='0 0 250 200'><rect width='100%' height='100%' fill='%23f0f0f0'/><text x='50%' y='50%' dominant-baseline='middle' text-anchor='middle' font-family='Arial' font-size='16' fill='%23666'>Model Preview</text></svg>" alt="{model_name}">
|
| 143 |
+
<div class="model-info">
|
| 144 |
+
<a href="{civitai_url}" target="_blank" class="model-name">{model_name}</a>
|
| 145 |
+
<div class="distance">Euclidean Distance: {distance:.4f}</div>
|
| 146 |
+
</div>
|
| 147 |
+
</div>
|
| 148 |
+
"""
|
| 149 |
|
| 150 |
+
html_output += "</div>"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
|
| 152 |
+
return html_output
|
| 153 |
|
| 154 |
# Gradio Interface
|
| 155 |
demo = gr.Interface(
|
| 156 |
fn=predict_image,
|
| 157 |
inputs=gr.Image(type="pil"),
|
| 158 |
+
outputs=gr.HTML(),
|
| 159 |
title="Stable Diffusion Model Recommender",
|
| 160 |
description="Upload an AI-generated image to get model recommendations",
|
| 161 |
+
examples=[["example1.jpg"], ["example2.jpg"]]
|
| 162 |
)
|
| 163 |
|
| 164 |
demo.launch()
|