Update app.py
Browse files
app.py
CHANGED
|
@@ -1,164 +1,205 @@
|
|
| 1 |
-
import
|
| 2 |
-
import
|
| 3 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
import gradio as gr
|
| 5 |
-
from PIL import Image
|
| 6 |
|
| 7 |
-
#
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
)
|
| 23 |
-
|
| 24 |
-
# Combined layers
|
| 25 |
-
self.combined = nn.Sequential(
|
| 26 |
-
nn.Linear(512, 256),
|
| 27 |
-
nn.ReLU(),
|
| 28 |
-
nn.Dropout(0.5),
|
| 29 |
-
nn.Linear(256, num_models)
|
| 30 |
-
)
|
| 31 |
-
|
| 32 |
-
def forward(self, image, text_features):
|
| 33 |
-
# Process image
|
| 34 |
-
img_features = self.cnn(image)
|
| 35 |
-
|
| 36 |
-
# Process text
|
| 37 |
-
text_features = self.text_mlp(text_features)
|
| 38 |
-
|
| 39 |
-
# Combine features
|
| 40 |
-
combined = torch.cat((img_features, text_features), dim=1)
|
| 41 |
-
|
| 42 |
-
# Final prediction
|
| 43 |
-
output = self.combined(combined)
|
| 44 |
-
return output
|
| 45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
#
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
-
def
|
| 67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
-
def
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
<style>
|
| 92 |
-
.model-gallery {
|
| 93 |
-
display: grid;
|
| 94 |
-
grid-template-columns: repeat(auto-fill, minmax(250px, 1fr));
|
| 95 |
-
gap: 20px;
|
| 96 |
-
padding: 20px;
|
| 97 |
-
}
|
| 98 |
-
.model-card {
|
| 99 |
-
border: 1px solid #ddd;
|
| 100 |
-
border-radius: 8px;
|
| 101 |
-
overflow: hidden;
|
| 102 |
-
background: white;
|
| 103 |
-
box-shadow: 0 2px 5px rgba(0,0,0,0.1);
|
| 104 |
-
}
|
| 105 |
-
.model-img {
|
| 106 |
-
width: 100%;
|
| 107 |
-
height: 200px;
|
| 108 |
-
object-fit: cover;
|
| 109 |
-
}
|
| 110 |
-
.model-info {
|
| 111 |
-
padding: 15px;
|
| 112 |
-
}
|
| 113 |
-
.model-name {
|
| 114 |
-
color: #2563eb;
|
| 115 |
-
text-decoration: none;
|
| 116 |
-
font-weight: bold;
|
| 117 |
-
font-size: 1.1em;
|
| 118 |
-
margin-bottom: 8px;
|
| 119 |
-
display: block;
|
| 120 |
-
}
|
| 121 |
-
.model-name:hover {
|
| 122 |
-
text-decoration: underline;
|
| 123 |
-
}
|
| 124 |
-
.distance {
|
| 125 |
-
color: #666;
|
| 126 |
-
font-size: 0.9em;
|
| 127 |
-
}
|
| 128 |
-
</style>
|
| 129 |
-
<div class="model-gallery">
|
| 130 |
-
"""
|
| 131 |
-
|
| 132 |
-
# Generate cards for each model
|
| 133 |
-
for idx, (score, model_idx) in enumerate(zip(top5_prob[0], top5_indices[0])):
|
| 134 |
-
model_name = predict_image.model_names[model_idx.item()]
|
| 135 |
-
distance = calculate_euclidean_distance(img_features[0],
|
| 136 |
-
torch.randn(512).numpy()) # Placeholder for actual features
|
| 137 |
-
|
| 138 |
-
civitai_url = f"https://civitai.com/search/models?sortBy=models_v9&query={model_name}"
|
| 139 |
-
|
| 140 |
-
html_output += f"""
|
| 141 |
-
<div class="model-card">
|
| 142 |
-
<img class="model-img" src="data:image/svg+xml,<svg xmlns='http://www.w3.org/2000/svg' width='250' height='200' viewBox='0 0 250 200'><rect width='100%' height='100%' fill='%23f0f0f0'/><text x='50%' y='50%' dominant-baseline='middle' text-anchor='middle' font-family='Arial' font-size='16' fill='%23666'>Model Preview</text></svg>" alt="{model_name}">
|
| 143 |
-
<div class="model-info">
|
| 144 |
-
<a href="{civitai_url}" target="_blank" class="model-name">{model_name}</a>
|
| 145 |
-
<div class="distance">Euclidean Distance: {distance:.4f}</div>
|
| 146 |
-
</div>
|
| 147 |
-
</div>
|
| 148 |
-
"""
|
| 149 |
-
|
| 150 |
-
html_output += "</div>"
|
| 151 |
-
|
| 152 |
-
return html_output
|
| 153 |
|
| 154 |
-
# Gradio
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
|
| 164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import requests
|
| 3 |
+
from tqdm import tqdm
|
| 4 |
+
from datasets import load_dataset
|
| 5 |
+
import numpy as np
|
| 6 |
+
import tensorflow as tf
|
| 7 |
+
from tensorflow.keras.applications.resnet50 import ResNet50, preprocess_input
|
| 8 |
+
from tensorflow.keras.preprocessing import image
|
| 9 |
+
from tensorflow.keras.layers import Dense, Input, Concatenate, Embedding, Flatten
|
| 10 |
+
from tensorflow.keras.models import Model
|
| 11 |
+
from tensorflow.keras.preprocessing.text import Tokenizer
|
| 12 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
| 13 |
+
from sklearn.preprocessing import LabelEncoder
|
| 14 |
+
import joblib
|
| 15 |
+
from PIL import UnidentifiedImageError, Image
|
| 16 |
import gradio as gr
|
|
|
|
| 17 |
|
| 18 |
+
# Constants
|
| 19 |
+
MAX_TEXT_LENGTH = 200
|
| 20 |
+
EMBEDDING_DIM = 100
|
| 21 |
+
IMAGE_SIZE = 224
|
| 22 |
+
BATCH_SIZE = 32
|
| 23 |
+
|
| 24 |
+
def load_and_preprocess_data(subset_size=2700):
|
| 25 |
+
# Load dataset
|
| 26 |
+
dataset = load_dataset("thefcraft/civitai-stable-diffusion-337k")
|
| 27 |
+
dataset_subset = dataset['train'].shuffle(seed=42).select(range(subset_size))
|
| 28 |
+
|
| 29 |
+
# Filter out NSFW content
|
| 30 |
+
dataset_subset = dataset_subset.filter(lambda x: not x['nsfw'])
|
| 31 |
+
|
| 32 |
+
return dataset_subset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
+
def process_text_data(dataset_subset):
|
| 35 |
+
# Combine prompt and negative prompt
|
| 36 |
+
text_data = [f"{sample['prompt']} {sample['negativePrompt']}" for sample in dataset_subset]
|
| 37 |
+
|
| 38 |
+
# Tokenize text
|
| 39 |
+
tokenizer = Tokenizer()
|
| 40 |
+
tokenizer.fit_on_texts(text_data)
|
| 41 |
+
sequences = tokenizer.texts_to_sequences(text_data)
|
| 42 |
+
text_data_padded = pad_sequences(sequences, maxlen=MAX_TEXT_LENGTH)
|
| 43 |
+
|
| 44 |
+
return text_data_padded, tokenizer
|
| 45 |
+
|
| 46 |
+
def process_image_data(dataset_subset):
|
| 47 |
+
image_dir = 'civitai_images'
|
| 48 |
+
os.makedirs(image_dir, exist_ok=True)
|
| 49 |
+
|
| 50 |
+
image_data = []
|
| 51 |
+
valid_indices = []
|
| 52 |
+
|
| 53 |
+
for idx, sample in enumerate(tqdm(dataset_subset)):
|
| 54 |
+
img_url = sample['url']
|
| 55 |
+
img_path = os.path.join(image_dir, os.path.basename(img_url))
|
| 56 |
|
| 57 |
+
try:
|
| 58 |
+
# Download and save image
|
| 59 |
+
response = requests.get(img_url)
|
| 60 |
+
response.raise_for_status()
|
| 61 |
+
|
| 62 |
+
if 'image' not in response.headers['Content-Type']:
|
| 63 |
+
continue
|
| 64 |
+
|
| 65 |
+
with open(img_path, 'wb') as f:
|
| 66 |
+
f.write(response.content)
|
| 67 |
+
|
| 68 |
+
# Load and preprocess image
|
| 69 |
+
img = image.load_img(img_path, target_size=(IMAGE_SIZE, IMAGE_SIZE))
|
| 70 |
+
img_array = image.img_to_array(img)
|
| 71 |
+
img_array = preprocess_input(img_array)
|
| 72 |
+
|
| 73 |
+
image_data.append(img_array)
|
| 74 |
+
valid_indices.append(idx)
|
| 75 |
+
|
| 76 |
+
except Exception as e:
|
| 77 |
+
print(f"Error processing image {img_url}: {e}")
|
| 78 |
+
continue
|
| 79 |
+
|
| 80 |
+
return np.array(image_data), valid_indices
|
| 81 |
|
| 82 |
+
def create_multimodal_model(num_words, num_classes):
|
| 83 |
+
# Image input branch (CNN)
|
| 84 |
+
image_input = Input(shape=(IMAGE_SIZE, IMAGE_SIZE, 3))
|
| 85 |
+
cnn_base = ResNet50(weights='imagenet', include_top=False, pooling='avg')
|
| 86 |
+
cnn_features = cnn_base(image_input)
|
| 87 |
+
|
| 88 |
+
# Text input branch (MLP)
|
| 89 |
+
text_input = Input(shape=(MAX_TEXT_LENGTH,))
|
| 90 |
+
embedding_layer = Embedding(num_words, EMBEDDING_DIM)(text_input)
|
| 91 |
+
flatten_text = Flatten()(embedding_layer)
|
| 92 |
+
text_features = Dense(256, activation='relu')(flatten_text)
|
| 93 |
+
|
| 94 |
+
# Combine features
|
| 95 |
+
combined = Concatenate()([cnn_features, text_features])
|
| 96 |
+
|
| 97 |
+
# Fully connected layers
|
| 98 |
+
x = Dense(512, activation='relu')(combined)
|
| 99 |
+
x = Dense(256, activation='relu')(x)
|
| 100 |
+
output = Dense(num_classes, activation='softmax')(x)
|
| 101 |
+
|
| 102 |
+
model = Model(inputs=[image_input, text_input], outputs=output)
|
| 103 |
+
return model
|
| 104 |
|
| 105 |
+
def train_model():
|
| 106 |
+
# Load and preprocess data
|
| 107 |
+
dataset_subset = load_and_preprocess_data()
|
| 108 |
+
|
| 109 |
+
# Process text data
|
| 110 |
+
text_data_padded, tokenizer = process_text_data(dataset_subset)
|
| 111 |
+
|
| 112 |
+
# Process image data
|
| 113 |
+
image_data, valid_indices = process_image_data(dataset_subset)
|
| 114 |
+
|
| 115 |
+
# Get valid text data and labels
|
| 116 |
+
text_data_padded = text_data_padded[valid_indices]
|
| 117 |
+
model_names = [dataset_subset[i]['Model'] for i in valid_indices]
|
| 118 |
+
|
| 119 |
+
# Encode labels
|
| 120 |
+
label_encoder = LabelEncoder()
|
| 121 |
+
encoded_labels = label_encoder.fit_transform(model_names)
|
| 122 |
+
|
| 123 |
+
# Create and compile model
|
| 124 |
+
model = create_multimodal_model(
|
| 125 |
+
num_words=len(tokenizer.word_index) + 1,
|
| 126 |
+
num_classes=len(label_encoder.classes_)
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
+
model.compile(
|
| 130 |
+
optimizer='adam',
|
| 131 |
+
loss='sparse_categorical_crossentropy',
|
| 132 |
+
metrics=['accuracy']
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
# Train model
|
| 136 |
+
history = model.fit(
|
| 137 |
+
[image_data, text_data_padded],
|
| 138 |
+
encoded_labels,
|
| 139 |
+
batch_size=BATCH_SIZE,
|
| 140 |
+
epochs=10,
|
| 141 |
+
validation_split=0.2
|
| 142 |
+
)
|
| 143 |
+
|
| 144 |
+
# Save models and encoders
|
| 145 |
+
model.save('multimodal_model')
|
| 146 |
+
joblib.dump(tokenizer, 'tokenizer.pkl')
|
| 147 |
+
joblib.dump(label_encoder, 'label_encoder.pkl')
|
| 148 |
+
|
| 149 |
+
return model, tokenizer, label_encoder
|
| 150 |
|
| 151 |
+
def get_recommendations(image_input, text_input, model, tokenizer, label_encoder, top_k=5):
|
| 152 |
+
# Preprocess image
|
| 153 |
+
img_array = image.img_to_array(image_input)
|
| 154 |
+
img_array = tf.image.resize(img_array, (IMAGE_SIZE, IMAGE_SIZE))
|
| 155 |
+
img_array = preprocess_input(img_array)
|
| 156 |
+
img_array = np.expand_dims(img_array, axis=0)
|
| 157 |
+
|
| 158 |
+
# Preprocess text
|
| 159 |
+
text_sequence = tokenizer.texts_to_sequences([text_input])
|
| 160 |
+
text_padded = pad_sequences(text_sequence, maxlen=MAX_TEXT_LENGTH)
|
| 161 |
+
|
| 162 |
+
# Get predictions
|
| 163 |
+
predictions = model.predict([img_array, text_padded])
|
| 164 |
+
top_indices = np.argsort(predictions[0])[-top_k:][::-1]
|
| 165 |
+
|
| 166 |
+
# Get recommended model names and confidence scores
|
| 167 |
+
recommendations = [
|
| 168 |
+
(label_encoder.inverse_transform([idx])[0], predictions[0][idx])
|
| 169 |
+
for idx in top_indices
|
| 170 |
+
]
|
| 171 |
+
|
| 172 |
+
return recommendations
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
|
| 174 |
+
# Gradio interface
|
| 175 |
+
def create_gradio_interface():
|
| 176 |
+
# Load saved models
|
| 177 |
+
model = tf.keras.models.load_model('multimodal_model')
|
| 178 |
+
tokenizer = joblib.load('tokenizer.pkl')
|
| 179 |
+
label_encoder = joblib.load('label_encoder.pkl')
|
| 180 |
+
|
| 181 |
+
def predict(img, text):
|
| 182 |
+
recommendations = get_recommendations(img, text, model, tokenizer, label_encoder)
|
| 183 |
+
return "\n".join([f"Model: {name}, Confidence: {conf:.2f}" for name, conf in recommendations])
|
| 184 |
+
|
| 185 |
+
interface = gr.Interface(
|
| 186 |
+
fn=predict,
|
| 187 |
+
inputs=[
|
| 188 |
+
gr.Image(type="pil", label="Upload Image"),
|
| 189 |
+
gr.Textbox(label="Enter Prompt")
|
| 190 |
+
],
|
| 191 |
+
outputs=gr.Textbox(label="Recommended Models"),
|
| 192 |
+
title="Multimodal Model Recommendation System",
|
| 193 |
+
description="Upload an image and enter a prompt to get model recommendations"
|
| 194 |
+
)
|
| 195 |
+
|
| 196 |
+
return interface
|
| 197 |
|
| 198 |
+
if __name__ == "__main__":
|
| 199 |
+
# Train model if not already trained
|
| 200 |
+
if not os.path.exists('multimodal_model'):
|
| 201 |
+
model, tokenizer, label_encoder = train_model()
|
| 202 |
+
|
| 203 |
+
# Launch Gradio interface
|
| 204 |
+
interface = create_gradio_interface()
|
| 205 |
+
interface.launch()
|