Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -41,12 +41,13 @@ def get_image_embedding(image):
|
|
| 41 |
padding=True
|
| 42 |
).to(device, torch_dtype)
|
| 43 |
|
| 44 |
-
# Generate decoder_input_ids
|
| 45 |
decoder_input_ids = model.generate(
|
| 46 |
**inputs,
|
| 47 |
-
|
| 48 |
min_length=1,
|
| 49 |
num_beams=1,
|
|
|
|
| 50 |
pad_token_id=processor.tokenizer.pad_token_id,
|
| 51 |
return_dict_in_generate=True,
|
| 52 |
).sequences
|
|
@@ -55,7 +56,6 @@ def get_image_embedding(image):
|
|
| 55 |
|
| 56 |
with torch.no_grad():
|
| 57 |
outputs = model(**inputs)
|
| 58 |
-
# Use the mean of the last hidden state as the embedding
|
| 59 |
image_embeddings = outputs.last_hidden_state.mean(dim=1)
|
| 60 |
return image_embeddings.cpu().numpy()
|
| 61 |
except Exception as e:
|
|
@@ -75,12 +75,13 @@ def get_text_embedding(text):
|
|
| 75 |
padding=True
|
| 76 |
).to(device, torch_dtype)
|
| 77 |
|
| 78 |
-
# Generate decoder_input_ids
|
| 79 |
decoder_input_ids = model.generate(
|
| 80 |
**inputs,
|
| 81 |
-
|
| 82 |
min_length=1,
|
| 83 |
num_beams=1,
|
|
|
|
| 84 |
pad_token_id=processor.tokenizer.pad_token_id,
|
| 85 |
return_dict_in_generate=True,
|
| 86 |
).sequences
|
|
|
|
| 41 |
padding=True
|
| 42 |
).to(device, torch_dtype)
|
| 43 |
|
| 44 |
+
# Generate decoder_input_ids with adjusted parameters
|
| 45 |
decoder_input_ids = model.generate(
|
| 46 |
**inputs,
|
| 47 |
+
max_new_tokens=20, # Increased from max_length
|
| 48 |
min_length=1,
|
| 49 |
num_beams=1,
|
| 50 |
+
do_sample=False,
|
| 51 |
pad_token_id=processor.tokenizer.pad_token_id,
|
| 52 |
return_dict_in_generate=True,
|
| 53 |
).sequences
|
|
|
|
| 56 |
|
| 57 |
with torch.no_grad():
|
| 58 |
outputs = model(**inputs)
|
|
|
|
| 59 |
image_embeddings = outputs.last_hidden_state.mean(dim=1)
|
| 60 |
return image_embeddings.cpu().numpy()
|
| 61 |
except Exception as e:
|
|
|
|
| 75 |
padding=True
|
| 76 |
).to(device, torch_dtype)
|
| 77 |
|
| 78 |
+
# Generate decoder_input_ids with adjusted parameters
|
| 79 |
decoder_input_ids = model.generate(
|
| 80 |
**inputs,
|
| 81 |
+
max_new_tokens=20, # Using max_new_tokens instead of max_length
|
| 82 |
min_length=1,
|
| 83 |
num_beams=1,
|
| 84 |
+
do_sample=False,
|
| 85 |
pad_token_id=processor.tokenizer.pad_token_id,
|
| 86 |
return_dict_in_generate=True,
|
| 87 |
).sequences
|