Spaces:
Runtime error
Runtime error
import gradio as gr | |
import jax | |
from diffusers import FlaxStableDiffusionPipeline | |
from flax.jax_utils import replicate | |
from flax.training.common_utils import shard | |
pipeline, pipeline_params = FlaxStableDiffusionPipeline.from_pretrained( | |
"bguisard/stable-diffusion-nano-2-1", | |
) | |
def generate_image(prompt: str, inference_steps: int = 30, prng_seed: int = 0): | |
rng = jax.random.PRNGKey(int(prng_seed)) | |
rng = jax.random.split(rng, jax.device_count()) | |
p_params = replicate(pipeline_params) | |
num_samples = 1 | |
prompt_ids = pipeline.prepare_inputs([prompt] * num_samples) | |
prompt_ids = shard(prompt_ids) | |
images = pipeline( | |
prompt_ids=prompt_ids, | |
params=p_params, | |
prng_seed=rng, | |
height=128, | |
width=128, | |
num_inference_steps=int(inference_steps), | |
jit=True, | |
).images | |
images = images.reshape((num_samples,) + images.shape[-3:]) | |
images = pipeline.numpy_to_pil(images) | |
return images[0] | |
prompt_input = gr.inputs.Textbox( | |
label="Prompt", placeholder="A watercolor painting of a bird" | |
) | |
inf_steps_input = gr.inputs.Slider( | |
minimum=1, maximum=100, default=30, step=1, label="Inference Steps" | |
) | |
seed_input = gr.inputs.Number(default=0, label="Seed") | |
app = gr.Interface( | |
fn=generate_image, | |
inputs=[prompt_input, inf_steps_input, seed_input], | |
outputs="image", | |
title="Stable Diffusion Nano", | |
description=( | |
"Based on stable diffusion and fine-tuned on 128x128 images, " | |
"Stable Diffusion Nano allows for fast prototyping of diffusion models, " | |
"enabling quick experimentation with easily available hardware." | |
), | |
examples=[["A watercolor painting of a bird", 30, 0]], | |
) | |
app.launch() | |