gcli2api / src /openai_transformers.py
bibibi12345's picture
added thinking support. added nothinking and maxthinking mode
0185608
"""
OpenAI Format Transformers - Handles conversion between OpenAI and Gemini API formats.
This module contains all the logic for transforming requests and responses between the two formats.
"""
import json
import time
import uuid
from typing import Dict, Any
from .models import OpenAIChatCompletionRequest, OpenAIChatCompletionResponse
from .config import (
DEFAULT_SAFETY_SETTINGS,
is_search_model,
get_base_model_name,
get_thinking_budget,
should_include_thoughts
)
def openai_request_to_gemini(openai_request: OpenAIChatCompletionRequest) -> Dict[str, Any]:
"""
Transform an OpenAI chat completion request to Gemini format.
Args:
openai_request: OpenAI format request
Returns:
Dictionary in Gemini API format
"""
contents = []
# Process each message in the conversation
for message in openai_request.messages:
role = message.role
# Map OpenAI roles to Gemini roles
if role == "assistant":
role = "model"
elif role == "system":
role = "user" # Gemini treats system messages as user messages
# Handle different content types (string vs list of parts)
if isinstance(message.content, list):
parts = []
for part in message.content:
if part.get("type") == "text":
parts.append({"text": part.get("text", "")})
elif part.get("type") == "image_url":
image_url = part.get("image_url", {}).get("url")
if image_url:
# Parse data URI: "data:image/jpeg;base64,{base64_image}"
try:
mime_type, base64_data = image_url.split(";")
_, mime_type = mime_type.split(":")
_, base64_data = base64_data.split(",")
parts.append({
"inlineData": {
"mimeType": mime_type,
"data": base64_data
}
})
except ValueError:
continue
contents.append({"role": role, "parts": parts})
else:
# Simple text content
contents.append({"role": role, "parts": [{"text": message.content}]})
# Map OpenAI generation parameters to Gemini format
generation_config = {}
if openai_request.temperature is not None:
generation_config["temperature"] = openai_request.temperature
if openai_request.top_p is not None:
generation_config["topP"] = openai_request.top_p
if openai_request.max_tokens is not None:
generation_config["maxOutputTokens"] = openai_request.max_tokens
if openai_request.stop is not None:
# Gemini supports stop sequences
if isinstance(openai_request.stop, str):
generation_config["stopSequences"] = [openai_request.stop]
elif isinstance(openai_request.stop, list):
generation_config["stopSequences"] = openai_request.stop
if openai_request.frequency_penalty is not None:
# Map frequency_penalty to Gemini's frequencyPenalty
generation_config["frequencyPenalty"] = openai_request.frequency_penalty
if openai_request.presence_penalty is not None:
# Map presence_penalty to Gemini's presencePenalty
generation_config["presencePenalty"] = openai_request.presence_penalty
if openai_request.n is not None:
# Map n (number of completions) to Gemini's candidateCount
generation_config["candidateCount"] = openai_request.n
if openai_request.seed is not None:
# Gemini supports seed for reproducible outputs
generation_config["seed"] = openai_request.seed
if openai_request.response_format is not None:
# Handle JSON mode if specified
if openai_request.response_format.get("type") == "json_object":
generation_config["responseMimeType"] = "application/json"
# Build the request payload
request_payload = {
"contents": contents,
"generationConfig": generation_config,
"safetySettings": DEFAULT_SAFETY_SETTINGS,
"model": get_base_model_name(openai_request.model) # Use base model name for API call
}
# Add Google Search grounding for search models
if is_search_model(openai_request.model):
request_payload["tools"] = [{"googleSearch": {}}]
# Add thinking configuration for thinking models
thinking_budget = get_thinking_budget(openai_request.model)
if thinking_budget is not None:
request_payload["generationConfig"]["thinkingConfig"] = {
"thinkingBudget": thinking_budget,
"includeThoughts": should_include_thoughts(openai_request.model)
}
return request_payload
def gemini_response_to_openai(gemini_response: Dict[str, Any], model: str) -> Dict[str, Any]:
"""
Transform a Gemini API response to OpenAI chat completion format.
Args:
gemini_response: Response from Gemini API
model: Model name to include in response
Returns:
Dictionary in OpenAI chat completion format
"""
choices = []
for candidate in gemini_response.get("candidates", []):
role = candidate.get("content", {}).get("role", "assistant")
# Map Gemini roles back to OpenAI roles
if role == "model":
role = "assistant"
# Extract and separate thinking tokens from regular content
parts = candidate.get("content", {}).get("parts", [])
content = ""
reasoning_content = ""
for part in parts:
if not part.get("text"):
continue
# Check if this part contains thinking tokens
if part.get("thought", False):
reasoning_content += part.get("text", "")
else:
content += part.get("text", "")
# Build message object
message = {
"role": role,
"content": content,
}
# Add reasoning_content if there are thinking tokens
if reasoning_content:
message["reasoning_content"] = reasoning_content
choices.append({
"index": candidate.get("index", 0),
"message": message,
"finish_reason": _map_finish_reason(candidate.get("finishReason")),
})
return {
"id": str(uuid.uuid4()),
"object": "chat.completion",
"created": int(time.time()),
"model": model,
"choices": choices,
}
def gemini_stream_chunk_to_openai(gemini_chunk: Dict[str, Any], model: str, response_id: str) -> Dict[str, Any]:
"""
Transform a Gemini streaming response chunk to OpenAI streaming format.
Args:
gemini_chunk: Single chunk from Gemini streaming response
model: Model name to include in response
response_id: Consistent ID for this streaming response
Returns:
Dictionary in OpenAI streaming format
"""
choices = []
for candidate in gemini_chunk.get("candidates", []):
role = candidate.get("content", {}).get("role", "assistant")
# Map Gemini roles back to OpenAI roles
if role == "model":
role = "assistant"
# Extract and separate thinking tokens from regular content
parts = candidate.get("content", {}).get("parts", [])
content = ""
reasoning_content = ""
for part in parts:
if not part.get("text"):
continue
# Check if this part contains thinking tokens
if part.get("thought", False):
reasoning_content += part.get("text", "")
else:
content += part.get("text", "")
# Build delta object
delta = {}
if content:
delta["content"] = content
if reasoning_content:
delta["reasoning_content"] = reasoning_content
choices.append({
"index": candidate.get("index", 0),
"delta": delta,
"finish_reason": _map_finish_reason(candidate.get("finishReason")),
})
return {
"id": response_id,
"object": "chat.completion.chunk",
"created": int(time.time()),
"model": model,
"choices": choices,
}
def _map_finish_reason(gemini_reason: str) -> str:
"""
Map Gemini finish reasons to OpenAI finish reasons.
Args:
gemini_reason: Finish reason from Gemini API
Returns:
OpenAI-compatible finish reason
"""
if gemini_reason == "STOP":
return "stop"
elif gemini_reason == "MAX_TOKENS":
return "length"
elif gemini_reason in ["SAFETY", "RECITATION"]:
return "content_filter"
else:
return None