""" OpenAI Format Transformers - Handles conversion between OpenAI and Gemini API formats. This module contains all the logic for transforming requests and responses between the two formats. """ import json import time import uuid from typing import Dict, Any from .models import OpenAIChatCompletionRequest, OpenAIChatCompletionResponse from .config import ( DEFAULT_SAFETY_SETTINGS, is_search_model, get_base_model_name, get_thinking_budget, should_include_thoughts ) def openai_request_to_gemini(openai_request: OpenAIChatCompletionRequest) -> Dict[str, Any]: """ Transform an OpenAI chat completion request to Gemini format. Args: openai_request: OpenAI format request Returns: Dictionary in Gemini API format """ contents = [] # Process each message in the conversation for message in openai_request.messages: role = message.role # Map OpenAI roles to Gemini roles if role == "assistant": role = "model" elif role == "system": role = "user" # Gemini treats system messages as user messages # Handle different content types (string vs list of parts) if isinstance(message.content, list): parts = [] for part in message.content: if part.get("type") == "text": parts.append({"text": part.get("text", "")}) elif part.get("type") == "image_url": image_url = part.get("image_url", {}).get("url") if image_url: # Parse data URI: "data:image/jpeg;base64,{base64_image}" try: mime_type, base64_data = image_url.split(";") _, mime_type = mime_type.split(":") _, base64_data = base64_data.split(",") parts.append({ "inlineData": { "mimeType": mime_type, "data": base64_data } }) except ValueError: continue contents.append({"role": role, "parts": parts}) else: # Simple text content contents.append({"role": role, "parts": [{"text": message.content}]}) # Map OpenAI generation parameters to Gemini format generation_config = {} if openai_request.temperature is not None: generation_config["temperature"] = openai_request.temperature if openai_request.top_p is not None: generation_config["topP"] = openai_request.top_p if openai_request.max_tokens is not None: generation_config["maxOutputTokens"] = openai_request.max_tokens if openai_request.stop is not None: # Gemini supports stop sequences if isinstance(openai_request.stop, str): generation_config["stopSequences"] = [openai_request.stop] elif isinstance(openai_request.stop, list): generation_config["stopSequences"] = openai_request.stop if openai_request.frequency_penalty is not None: # Map frequency_penalty to Gemini's frequencyPenalty generation_config["frequencyPenalty"] = openai_request.frequency_penalty if openai_request.presence_penalty is not None: # Map presence_penalty to Gemini's presencePenalty generation_config["presencePenalty"] = openai_request.presence_penalty if openai_request.n is not None: # Map n (number of completions) to Gemini's candidateCount generation_config["candidateCount"] = openai_request.n if openai_request.seed is not None: # Gemini supports seed for reproducible outputs generation_config["seed"] = openai_request.seed if openai_request.response_format is not None: # Handle JSON mode if specified if openai_request.response_format.get("type") == "json_object": generation_config["responseMimeType"] = "application/json" # Build the request payload request_payload = { "contents": contents, "generationConfig": generation_config, "safetySettings": DEFAULT_SAFETY_SETTINGS, "model": get_base_model_name(openai_request.model) # Use base model name for API call } # Add Google Search grounding for search models if is_search_model(openai_request.model): request_payload["tools"] = [{"googleSearch": {}}] # Add thinking configuration for thinking models thinking_budget = get_thinking_budget(openai_request.model) if thinking_budget is not None: request_payload["generationConfig"]["thinkingConfig"] = { "thinkingBudget": thinking_budget, "includeThoughts": should_include_thoughts(openai_request.model) } return request_payload def gemini_response_to_openai(gemini_response: Dict[str, Any], model: str) -> Dict[str, Any]: """ Transform a Gemini API response to OpenAI chat completion format. Args: gemini_response: Response from Gemini API model: Model name to include in response Returns: Dictionary in OpenAI chat completion format """ choices = [] for candidate in gemini_response.get("candidates", []): role = candidate.get("content", {}).get("role", "assistant") # Map Gemini roles back to OpenAI roles if role == "model": role = "assistant" # Extract and separate thinking tokens from regular content parts = candidate.get("content", {}).get("parts", []) content = "" reasoning_content = "" for part in parts: if not part.get("text"): continue # Check if this part contains thinking tokens if part.get("thought", False): reasoning_content += part.get("text", "") else: content += part.get("text", "") # Build message object message = { "role": role, "content": content, } # Add reasoning_content if there are thinking tokens if reasoning_content: message["reasoning_content"] = reasoning_content choices.append({ "index": candidate.get("index", 0), "message": message, "finish_reason": _map_finish_reason(candidate.get("finishReason")), }) return { "id": str(uuid.uuid4()), "object": "chat.completion", "created": int(time.time()), "model": model, "choices": choices, } def gemini_stream_chunk_to_openai(gemini_chunk: Dict[str, Any], model: str, response_id: str) -> Dict[str, Any]: """ Transform a Gemini streaming response chunk to OpenAI streaming format. Args: gemini_chunk: Single chunk from Gemini streaming response model: Model name to include in response response_id: Consistent ID for this streaming response Returns: Dictionary in OpenAI streaming format """ choices = [] for candidate in gemini_chunk.get("candidates", []): role = candidate.get("content", {}).get("role", "assistant") # Map Gemini roles back to OpenAI roles if role == "model": role = "assistant" # Extract and separate thinking tokens from regular content parts = candidate.get("content", {}).get("parts", []) content = "" reasoning_content = "" for part in parts: if not part.get("text"): continue # Check if this part contains thinking tokens if part.get("thought", False): reasoning_content += part.get("text", "") else: content += part.get("text", "") # Build delta object delta = {} if content: delta["content"] = content if reasoning_content: delta["reasoning_content"] = reasoning_content choices.append({ "index": candidate.get("index", 0), "delta": delta, "finish_reason": _map_finish_reason(candidate.get("finishReason")), }) return { "id": response_id, "object": "chat.completion.chunk", "created": int(time.time()), "model": model, "choices": choices, } def _map_finish_reason(gemini_reason: str) -> str: """ Map Gemini finish reasons to OpenAI finish reasons. Args: gemini_reason: Finish reason from Gemini API Returns: OpenAI-compatible finish reason """ if gemini_reason == "STOP": return "stop" elif gemini_reason == "MAX_TOKENS": return "length" elif gemini_reason in ["SAFETY", "RECITATION"]: return "content_filter" else: return None