# source: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/blob/main/src/utils_display.py from dataclasses import dataclass import plotly.graph_objects as go from transformers import AutoConfig import plotly.express as px import numpy as np # These classes are for user facing column names, to avoid having to change them # all around the code when a modif is needed @dataclass class ColumnContent: name: str type: str displayed_by_default: bool hidden: bool = False def fields(raw_class): return [ v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__" ] @dataclass(frozen=True) class AutoEvalColumn: # Auto evals column model_type_symbol = ColumnContent("type", "str", True) model = ColumnContent("model", "markdown", True) complete_score = ColumnContent("complete", "number", True) instruct_score = ColumnContent("instruct", "number", True) elo_mle = ColumnContent("elo_mle", "number", True) dummy = ColumnContent("model", "str", True) size = ColumnContent("size", "number", True) def model_hyperlink(link, model_name): return f'{model_name}' def make_clickable_names(df): df["model"] = df.apply( lambda row: model_hyperlink(row["link"], row["model"]), axis=1 ) return df def plot_elo_mle(df): fig = px.scatter(df, x="model", y="rating", error_y="error_y", error_y_minus="error_y_minus", # title="Bootstrap of Elo MLE Estimates (BigCodeBench-Complete)" ) fig.update_layout(xaxis_title="Model", yaxis_title="Rating", autosize=True, # width=1300, # height=900, ) return fig def plot_solve_rate(df, task, rows=30, cols=38): keys = df["task_id"] values = df["solve_rate"] values = np.array(values) n = len(values) if rows is None or cols is None: cols = int(math.sqrt(n)) rows = cols if cols * cols >= n else cols + 1 while rows * cols < n: cols += 1 values = np.pad(values, (0, rows * cols - n), 'constant', constant_values=np.nan).reshape((rows, cols)) keys = np.pad(keys, (0, rows * cols - n), 'constant', constant_values='').reshape((rows, cols)) hover_text = np.empty_like(values, dtype=object) for i in range(rows): for j in range(cols): if not np.isnan(values[i, j]): hover_text[i, j] = f"{keys[i, j]}
Solve Rate: {values[i, j]:.2f}" else: hover_text[i, j] = "NaN" upper_solve_rate = round(np.count_nonzero(values)/n*100, 2) fig = go.Figure(data=go.Heatmap( z=values, text=hover_text, hoverinfo='text', colorscale='teal', zmin=0, zmax=100 )) fig.update_layout( title=f'BigCodeBench-{task}
Lowest Upper Limit: {upper_solve_rate}%', xaxis_nticks=cols, yaxis_nticks=rows, xaxis=dict(showticklabels=False), yaxis=dict(showticklabels=False), autosize=True, # width=760, # height=600, ) return fig def styled_error(error): return f"

{error}

" def styled_warning(warn): return f"

{warn}

" def styled_message(message): return f"

{message}

" def has_no_nan_values(df, columns): return df[columns].notna().all(axis=1) def has_nan_values(df, columns): return df[columns].isna().any(axis=1) def is_model_on_hub(model_name: str, revision: str) -> bool: try: AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=False) return True, None except ValueError: return ( False, "needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.", ) except Exception as e: print(f"Could not get the model config from the hub.: {e}") return False, "was not found on hub!"