Spaces:
Sleeping
Sleeping
Bill Psomas
commited on
Commit
·
d224f5c
1
Parent(s):
444aa6e
Add initial demo files
Browse files- app.py +63 -0
- features/patternnet_clip.pkl +3 -0
app.py
ADDED
|
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torch
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import open_clip
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import pickle
|
| 8 |
+
|
| 9 |
+
# Load pre-trained model
|
| 10 |
+
model, _, tokenizer = open_clip.create_model_and_transforms('ViT-L-14', pretrained='openai')
|
| 11 |
+
|
| 12 |
+
# Load features
|
| 13 |
+
def load_features(pickle_file):
|
| 14 |
+
with open(pickle_file, 'rb') as f:
|
| 15 |
+
data = pickle.load(f)
|
| 16 |
+
return data
|
| 17 |
+
|
| 18 |
+
# Calculate similarity
|
| 19 |
+
def calculate_similarity(image_features, text_feature, lambda_val=0.5):
|
| 20 |
+
image_similarities = image_features @ text_feature.T
|
| 21 |
+
text_similarities = text_feature @ text_feature.T
|
| 22 |
+
combined_similarities = (1 - lambda_val) * image_similarities + lambda_val * text_similarities
|
| 23 |
+
return combined_similarities
|
| 24 |
+
|
| 25 |
+
# Load precomputed features
|
| 26 |
+
features = load_features('features/patternnet_clip.pkl')
|
| 27 |
+
image_features = torch.tensor(features['feats']).cuda()
|
| 28 |
+
image_paths = features['paths']
|
| 29 |
+
|
| 30 |
+
def image_text_retrieval(image, text, lambda_val):
|
| 31 |
+
# Preprocess image
|
| 32 |
+
preprocess = open_clip.get_preprocess('ViT-L-14')
|
| 33 |
+
image = preprocess(image).unsqueeze(0).cuda()
|
| 34 |
+
|
| 35 |
+
# Encode image and text
|
| 36 |
+
image_feature = model.encode_image(image).cpu()
|
| 37 |
+
text_feature = model.encode_text(tokenizer(text).unsqueeze(0).cuda()).cpu()
|
| 38 |
+
|
| 39 |
+
# Calculate combined similarities
|
| 40 |
+
similarities = calculate_similarity(image_features, text_feature, lambda_val)
|
| 41 |
+
top_indices = similarities.topk(5).indices.squeeze().tolist()
|
| 42 |
+
|
| 43 |
+
# Retrieve top images
|
| 44 |
+
top_images = [Image.open(image_paths[i]) for i in top_indices]
|
| 45 |
+
return top_images
|
| 46 |
+
|
| 47 |
+
# Create Gradio interface
|
| 48 |
+
def demo(image, text, lambda_val):
|
| 49 |
+
return image_text_retrieval(image, text, lambda_val)
|
| 50 |
+
|
| 51 |
+
iface = gr.Interface(
|
| 52 |
+
fn=demo,
|
| 53 |
+
inputs=[
|
| 54 |
+
gr.inputs.Image(type="pil", label="Query Image"),
|
| 55 |
+
gr.inputs.Textbox(lines=2, placeholder="Enter text query...", label="Text Query"),
|
| 56 |
+
gr.inputs.Slider(minimum=0, maximum=1, default=0.5, label="Lambda Value (Image-Text Weight)")
|
| 57 |
+
],
|
| 58 |
+
outputs=[gr.outputs.Gallery(label="Retrieved Images")],
|
| 59 |
+
title="Composed Image Retrieval for Remote Sensing",
|
| 60 |
+
description="Upload a query image, enter a text query, and adjust the lambda value to retrieve images based on both image and text inputs."
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
iface.launch()
|
features/patternnet_clip.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a21d512ab9fd037ac31f1752948eee34c51a31e57a2bffe7e3d253e861ce3b7f
|
| 3 |
+
size 96401525
|