multimodalart HF Staff commited on
Commit
d9dd23e
·
verified ·
1 Parent(s): 8c1d120

Delete pipeline_flux_kontext.py

Browse files
Files changed (1) hide show
  1. pipeline_flux_kontext.py +0 -1117
pipeline_flux_kontext.py DELETED
@@ -1,1117 +0,0 @@
1
- # Copyright 2025 Black Forest Labs and The HuggingFace Team. All rights reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- import inspect
16
- from typing import Any, Callable, Dict, List, Optional, Union
17
-
18
- import numpy as np
19
- import torch
20
- from transformers import (
21
- CLIPImageProcessor,
22
- CLIPTextModel,
23
- CLIPTokenizer,
24
- CLIPVisionModelWithProjection,
25
- T5EncoderModel,
26
- T5TokenizerFast,
27
- )
28
-
29
- from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
30
- from diffusers.loaders import FluxIPAdapterMixin, FluxLoraLoaderMixin, FromSingleFileMixin, TextualInversionLoaderMixin
31
- from diffusers.models import AutoencoderKL, FluxTransformer2DModel
32
- from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
33
- from diffusers.utils import (
34
- USE_PEFT_BACKEND,
35
- is_torch_xla_available,
36
- logging,
37
- replace_example_docstring,
38
- scale_lora_layers,
39
- unscale_lora_layers,
40
- )
41
- from diffusers.utils.torch_utils import randn_tensor
42
- from diffusers.pipelines.pipeline_utils import DiffusionPipeline
43
- from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput
44
-
45
-
46
- if is_torch_xla_available():
47
- import torch_xla.core.xla_model as xm
48
-
49
- XLA_AVAILABLE = True
50
- else:
51
- XLA_AVAILABLE = False
52
-
53
-
54
- logger = logging.get_logger(__name__) # pylint: disable=invalid-name
55
-
56
- EXAMPLE_DOC_STRING = """
57
- Examples:
58
- ```py
59
- >>> import torch
60
- >>> from diffusers import FluxKontextPipeline
61
- >>> from diffusers.utils import load_image
62
-
63
- >>> pipe = FluxKontextPipeline.from_pretrained(
64
- ... "black-forest-labs/FLUX.1-kontext", transformer=transformer, torch_dtype=torch.bfloat16
65
- ... )
66
- >>> pipe.to("cuda")
67
-
68
- >>> image = load_image("inputs/yarn-art-pikachu.png").convert("RGB")
69
- >>> prompt = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/yarn-art-pikachu.png"
70
- >>> image = pipe(
71
- ... image=image,
72
- ... prompt=prompt,
73
- ... guidance_scale=2.5,
74
- ... generator=torch.Generator().manual_seed(42),
75
- ... ).images[0]
76
- >>> image.save("output.png")
77
- ```
78
- """
79
-
80
- PREFERRED_KONTEXT_RESOLUTIONS = [
81
- (672, 1568),
82
- (688, 1504),
83
- (720, 1456),
84
- (752, 1392),
85
- (800, 1328),
86
- (832, 1248),
87
- (880, 1184),
88
- (944, 1104),
89
- (1024, 1024),
90
- (1104, 944),
91
- (1184, 880),
92
- (1248, 832),
93
- (1328, 800),
94
- (1392, 752),
95
- (1456, 720),
96
- (1504, 688),
97
- (1568, 672),
98
- ]
99
-
100
-
101
- def calculate_shift(
102
- image_seq_len,
103
- base_seq_len: int = 256,
104
- max_seq_len: int = 4096,
105
- base_shift: float = 0.5,
106
- max_shift: float = 1.15,
107
- ):
108
- m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
109
- b = base_shift - m * base_seq_len
110
- mu = image_seq_len * m + b
111
- return mu
112
-
113
-
114
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
115
- def retrieve_timesteps(
116
- scheduler,
117
- num_inference_steps: Optional[int] = None,
118
- device: Optional[Union[str, torch.device]] = None,
119
- timesteps: Optional[List[int]] = None,
120
- sigmas: Optional[List[float]] = None,
121
- **kwargs,
122
- ):
123
- r"""
124
- Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
125
- custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
126
-
127
- Args:
128
- scheduler (`SchedulerMixin`):
129
- The scheduler to get timesteps from.
130
- num_inference_steps (`int`):
131
- The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
132
- must be `None`.
133
- device (`str` or `torch.device`, *optional*):
134
- The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
135
- timesteps (`List[int]`, *optional*):
136
- Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
137
- `num_inference_steps` and `sigmas` must be `None`.
138
- sigmas (`List[float]`, *optional*):
139
- Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
140
- `num_inference_steps` and `timesteps` must be `None`.
141
-
142
- Returns:
143
- `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
144
- second element is the number of inference steps.
145
- """
146
- if timesteps is not None and sigmas is not None:
147
- raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
148
- if timesteps is not None:
149
- accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
150
- if not accepts_timesteps:
151
- raise ValueError(
152
- f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
153
- f" timestep schedules. Please check whether you are using the correct scheduler."
154
- )
155
- scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
156
- timesteps = scheduler.timesteps
157
- num_inference_steps = len(timesteps)
158
- elif sigmas is not None:
159
- accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
160
- if not accept_sigmas:
161
- raise ValueError(
162
- f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
163
- f" sigmas schedules. Please check whether you are using the correct scheduler."
164
- )
165
- scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
166
- timesteps = scheduler.timesteps
167
- num_inference_steps = len(timesteps)
168
- else:
169
- scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
170
- timesteps = scheduler.timesteps
171
- return timesteps, num_inference_steps
172
-
173
-
174
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
175
- def retrieve_latents(
176
- encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
177
- ):
178
- if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
179
- return encoder_output.latent_dist.sample(generator)
180
- elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
181
- return encoder_output.latent_dist.mode()
182
- elif hasattr(encoder_output, "latents"):
183
- return encoder_output.latents
184
- else:
185
- raise AttributeError("Could not access latents of provided encoder_output")
186
-
187
-
188
- class FluxKontextPipeline(
189
- DiffusionPipeline,
190
- FluxLoraLoaderMixin,
191
- FromSingleFileMixin,
192
- TextualInversionLoaderMixin,
193
- FluxIPAdapterMixin,
194
- ):
195
- r"""
196
- The Flux Kontext pipeline for text-to-image generation.
197
-
198
- Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
199
-
200
- Args:
201
- transformer ([`FluxTransformer2DModel`]):
202
- Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
203
- scheduler ([`FlowMatchEulerDiscreteScheduler`]):
204
- A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
205
- vae ([`AutoencoderKL`]):
206
- Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
207
- text_encoder ([`CLIPTextModel`]):
208
- [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
209
- the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
210
- text_encoder_2 ([`T5EncoderModel`]):
211
- [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
212
- the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
213
- tokenizer (`CLIPTokenizer`):
214
- Tokenizer of class
215
- [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
216
- tokenizer_2 (`T5TokenizerFast`):
217
- Second Tokenizer of class
218
- [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
219
- """
220
-
221
- model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->transformer->vae"
222
- _optional_components = ["image_encoder", "feature_extractor"]
223
- _callback_tensor_inputs = ["latents", "prompt_embeds"]
224
-
225
- def __init__(
226
- self,
227
- scheduler: FlowMatchEulerDiscreteScheduler,
228
- vae: AutoencoderKL,
229
- text_encoder: CLIPTextModel,
230
- tokenizer: CLIPTokenizer,
231
- text_encoder_2: T5EncoderModel,
232
- tokenizer_2: T5TokenizerFast,
233
- transformer: FluxTransformer2DModel,
234
- image_encoder: CLIPVisionModelWithProjection = None,
235
- feature_extractor: CLIPImageProcessor = None,
236
- ):
237
- super().__init__()
238
-
239
- self.register_modules(
240
- vae=vae,
241
- text_encoder=text_encoder,
242
- text_encoder_2=text_encoder_2,
243
- tokenizer=tokenizer,
244
- tokenizer_2=tokenizer_2,
245
- transformer=transformer,
246
- scheduler=scheduler,
247
- image_encoder=image_encoder,
248
- feature_extractor=feature_extractor,
249
- )
250
- self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
251
- # Flux latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible
252
- # by the patch size. So the vae scale factor is multiplied by the patch size to account for this
253
- self.latent_channels = self.vae.config.latent_channels if getattr(self, "vae", None) else 16
254
- self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
255
- self.tokenizer_max_length = (
256
- self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
257
- )
258
- self.default_sample_size = 128
259
-
260
- def _get_t5_prompt_embeds(
261
- self,
262
- prompt: Union[str, List[str]] = None,
263
- num_images_per_prompt: int = 1,
264
- max_sequence_length: int = 512,
265
- device: Optional[torch.device] = None,
266
- dtype: Optional[torch.dtype] = None,
267
- ):
268
- device = device or self._execution_device
269
- dtype = dtype or self.text_encoder.dtype
270
-
271
- prompt = [prompt] if isinstance(prompt, str) else prompt
272
- batch_size = len(prompt)
273
-
274
- if isinstance(self, TextualInversionLoaderMixin):
275
- prompt = self.maybe_convert_prompt(prompt, self.tokenizer_2)
276
-
277
- text_inputs = self.tokenizer_2(
278
- prompt,
279
- padding="max_length",
280
- max_length=max_sequence_length,
281
- truncation=True,
282
- return_length=False,
283
- return_overflowing_tokens=False,
284
- return_tensors="pt",
285
- )
286
- text_input_ids = text_inputs.input_ids
287
- untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids
288
-
289
- if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
290
- removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
291
- logger.warning(
292
- "The following part of your input was truncated because `max_sequence_length` is set to "
293
- f" {max_sequence_length} tokens: {removed_text}"
294
- )
295
-
296
- prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0]
297
-
298
- dtype = self.text_encoder_2.dtype
299
- prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
300
-
301
- _, seq_len, _ = prompt_embeds.shape
302
-
303
- # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
304
- prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
305
- prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
306
-
307
- return prompt_embeds
308
-
309
- def _get_clip_prompt_embeds(
310
- self,
311
- prompt: Union[str, List[str]],
312
- num_images_per_prompt: int = 1,
313
- device: Optional[torch.device] = None,
314
- ):
315
- device = device or self._execution_device
316
-
317
- prompt = [prompt] if isinstance(prompt, str) else prompt
318
- batch_size = len(prompt)
319
-
320
- if isinstance(self, TextualInversionLoaderMixin):
321
- prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
322
-
323
- text_inputs = self.tokenizer(
324
- prompt,
325
- padding="max_length",
326
- max_length=self.tokenizer_max_length,
327
- truncation=True,
328
- return_overflowing_tokens=False,
329
- return_length=False,
330
- return_tensors="pt",
331
- )
332
-
333
- text_input_ids = text_inputs.input_ids
334
- untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
335
- if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
336
- removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
337
- logger.warning(
338
- "The following part of your input was truncated because CLIP can only handle sequences up to"
339
- f" {self.tokenizer_max_length} tokens: {removed_text}"
340
- )
341
- prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False)
342
-
343
- # Use pooled output of CLIPTextModel
344
- prompt_embeds = prompt_embeds.pooler_output
345
- prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
346
-
347
- # duplicate text embeddings for each generation per prompt, using mps friendly method
348
- prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt)
349
- prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
350
-
351
- return prompt_embeds
352
-
353
- def encode_prompt(
354
- self,
355
- prompt: Union[str, List[str]],
356
- prompt_2: Union[str, List[str]],
357
- device: Optional[torch.device] = None,
358
- num_images_per_prompt: int = 1,
359
- prompt_embeds: Optional[torch.FloatTensor] = None,
360
- pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
361
- max_sequence_length: int = 512,
362
- lora_scale: Optional[float] = None,
363
- ):
364
- r"""
365
-
366
- Args:
367
- prompt (`str` or `List[str]`, *optional*):
368
- prompt to be encoded
369
- prompt_2 (`str` or `List[str]`, *optional*):
370
- The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
371
- used in all text-encoders
372
- device: (`torch.device`):
373
- torch device
374
- num_images_per_prompt (`int`):
375
- number of images that should be generated per prompt
376
- prompt_embeds (`torch.FloatTensor`, *optional*):
377
- Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
378
- provided, text embeddings will be generated from `prompt` input argument.
379
- pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
380
- Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
381
- If not provided, pooled text embeddings will be generated from `prompt` input argument.
382
- lora_scale (`float`, *optional*):
383
- A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
384
- """
385
- device = device or self._execution_device
386
-
387
- # set lora scale so that monkey patched LoRA
388
- # function of text encoder can correctly access it
389
- if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
390
- self._lora_scale = lora_scale
391
-
392
- # dynamically adjust the LoRA scale
393
- if self.text_encoder is not None and USE_PEFT_BACKEND:
394
- scale_lora_layers(self.text_encoder, lora_scale)
395
- if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
396
- scale_lora_layers(self.text_encoder_2, lora_scale)
397
-
398
- prompt = [prompt] if isinstance(prompt, str) else prompt
399
-
400
- if prompt_embeds is None:
401
- prompt_2 = prompt_2 or prompt
402
- prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
403
-
404
- # We only use the pooled prompt output from the CLIPTextModel
405
- pooled_prompt_embeds = self._get_clip_prompt_embeds(
406
- prompt=prompt,
407
- device=device,
408
- num_images_per_prompt=num_images_per_prompt,
409
- )
410
- prompt_embeds = self._get_t5_prompt_embeds(
411
- prompt=prompt_2,
412
- num_images_per_prompt=num_images_per_prompt,
413
- max_sequence_length=max_sequence_length,
414
- device=device,
415
- )
416
-
417
- if self.text_encoder is not None:
418
- if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
419
- # Retrieve the original scale by scaling back the LoRA layers
420
- unscale_lora_layers(self.text_encoder, lora_scale)
421
-
422
- if self.text_encoder_2 is not None:
423
- if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
424
- # Retrieve the original scale by scaling back the LoRA layers
425
- unscale_lora_layers(self.text_encoder_2, lora_scale)
426
-
427
- dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
428
- text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
429
-
430
- return prompt_embeds, pooled_prompt_embeds, text_ids
431
-
432
- def encode_image(self, image, device, num_images_per_prompt):
433
- dtype = next(self.image_encoder.parameters()).dtype
434
-
435
- if not isinstance(image, torch.Tensor):
436
- image = self.feature_extractor(image, return_tensors="pt").pixel_values
437
-
438
- image = image.to(device=device, dtype=dtype)
439
- image_embeds = self.image_encoder(image).image_embeds
440
- image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
441
- return image_embeds
442
-
443
- def prepare_ip_adapter_image_embeds(
444
- self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt
445
- ):
446
- image_embeds = []
447
- if ip_adapter_image_embeds is None:
448
- if not isinstance(ip_adapter_image, list):
449
- ip_adapter_image = [ip_adapter_image]
450
-
451
- if len(ip_adapter_image) != self.transformer.encoder_hid_proj.num_ip_adapters:
452
- raise ValueError(
453
- f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {self.transformer.encoder_hid_proj.num_ip_adapters} IP Adapters."
454
- )
455
-
456
- for single_ip_adapter_image in ip_adapter_image:
457
- single_image_embeds = self.encode_image(single_ip_adapter_image, device, 1)
458
- image_embeds.append(single_image_embeds[None, :])
459
- else:
460
- if not isinstance(ip_adapter_image_embeds, list):
461
- ip_adapter_image_embeds = [ip_adapter_image_embeds]
462
-
463
- if len(ip_adapter_image_embeds) != self.transformer.encoder_hid_proj.num_ip_adapters:
464
- raise ValueError(
465
- f"`ip_adapter_image_embeds` must have same length as the number of IP Adapters. Got {len(ip_adapter_image_embeds)} image embeds and {self.transformer.encoder_hid_proj.num_ip_adapters} IP Adapters."
466
- )
467
-
468
- for single_image_embeds in ip_adapter_image_embeds:
469
- image_embeds.append(single_image_embeds)
470
-
471
- ip_adapter_image_embeds = []
472
- for single_image_embeds in image_embeds:
473
- single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
474
- single_image_embeds = single_image_embeds.to(device=device)
475
- ip_adapter_image_embeds.append(single_image_embeds)
476
-
477
- return ip_adapter_image_embeds
478
-
479
- def check_inputs(
480
- self,
481
- prompt,
482
- prompt_2,
483
- height,
484
- width,
485
- negative_prompt=None,
486
- negative_prompt_2=None,
487
- prompt_embeds=None,
488
- negative_prompt_embeds=None,
489
- pooled_prompt_embeds=None,
490
- negative_pooled_prompt_embeds=None,
491
- callback_on_step_end_tensor_inputs=None,
492
- max_sequence_length=None,
493
- ):
494
- if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0:
495
- logger.warning(
496
- f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly"
497
- )
498
-
499
- if callback_on_step_end_tensor_inputs is not None and not all(
500
- k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
501
- ):
502
- raise ValueError(
503
- f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
504
- )
505
-
506
- if prompt is not None and prompt_embeds is not None:
507
- raise ValueError(
508
- f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
509
- " only forward one of the two."
510
- )
511
- elif prompt_2 is not None and prompt_embeds is not None:
512
- raise ValueError(
513
- f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
514
- " only forward one of the two."
515
- )
516
- elif prompt is None and prompt_embeds is None:
517
- raise ValueError(
518
- "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
519
- )
520
- elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
521
- raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
522
- elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
523
- raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
524
-
525
- if negative_prompt is not None and negative_prompt_embeds is not None:
526
- raise ValueError(
527
- f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
528
- f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
529
- )
530
- elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
531
- raise ValueError(
532
- f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
533
- f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
534
- )
535
-
536
- if prompt_embeds is not None and pooled_prompt_embeds is None:
537
- raise ValueError(
538
- "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
539
- )
540
- if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
541
- raise ValueError(
542
- "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
543
- )
544
-
545
- if max_sequence_length is not None and max_sequence_length > 512:
546
- raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
547
-
548
- @staticmethod
549
- def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
550
- latent_image_ids = torch.zeros(height, width, 3)
551
- latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[:, None]
552
- latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, :]
553
-
554
- latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
555
-
556
- latent_image_ids = latent_image_ids.reshape(
557
- latent_image_id_height * latent_image_id_width, latent_image_id_channels
558
- )
559
-
560
- return latent_image_ids.to(device=device, dtype=dtype)
561
-
562
- @staticmethod
563
- def _pack_latents(latents, batch_size, num_channels_latents, height, width):
564
- latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
565
- latents = latents.permute(0, 2, 4, 1, 3, 5)
566
- latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
567
-
568
- return latents
569
-
570
- @staticmethod
571
- def _unpack_latents(latents, height, width, vae_scale_factor):
572
- batch_size, num_patches, channels = latents.shape
573
-
574
- # VAE applies 8x compression on images but we must also account for packing which requires
575
- # latent height and width to be divisible by 2.
576
- height = 2 * (int(height) // (vae_scale_factor * 2))
577
- width = 2 * (int(width) // (vae_scale_factor * 2))
578
-
579
- latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2)
580
- latents = latents.permute(0, 3, 1, 4, 2, 5)
581
-
582
- latents = latents.reshape(batch_size, channels // (2 * 2), height, width)
583
-
584
- return latents
585
-
586
- # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_inpaint.StableDiffusion3InpaintPipeline._encode_vae_image
587
- def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
588
- if isinstance(generator, list):
589
- image_latents = [
590
- retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i], sample_mode="argmax")
591
- for i in range(image.shape[0])
592
- ]
593
- image_latents = torch.cat(image_latents, dim=0)
594
- else:
595
- image_latents = retrieve_latents(self.vae.encode(image), generator=generator, sample_mode="argmax")
596
-
597
- image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
598
-
599
- return image_latents
600
-
601
- def enable_vae_slicing(self):
602
- r"""
603
- Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
604
- compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
605
- """
606
- self.vae.enable_slicing()
607
-
608
- def disable_vae_slicing(self):
609
- r"""
610
- Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
611
- computing decoding in one step.
612
- """
613
- self.vae.disable_slicing()
614
-
615
- def enable_vae_tiling(self):
616
- r"""
617
- Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
618
- compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
619
- processing larger images.
620
- """
621
- self.vae.enable_tiling()
622
-
623
- def disable_vae_tiling(self):
624
- r"""
625
- Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
626
- computing decoding in one step.
627
- """
628
- self.vae.disable_tiling()
629
-
630
- def prepare_latents(
631
- self,
632
- image: Optional[torch.Tensor],
633
- batch_size: int,
634
- num_channels_latents: int,
635
- height: int,
636
- width: int,
637
- dtype: torch.dtype,
638
- device: torch.device,
639
- generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
640
- latents: Optional[torch.Tensor] = None,
641
- ):
642
- if isinstance(generator, list) and len(generator) != batch_size:
643
- raise ValueError(
644
- f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
645
- f" size of {batch_size}. Make sure the batch size matches the length of the generators."
646
- )
647
-
648
- # VAE applies 8x compression on images but we must also account for packing which requires
649
- # latent height and width to be divisible by 2.
650
- height = 2 * (int(height) // (self.vae_scale_factor * 2))
651
- width = 2 * (int(width) // (self.vae_scale_factor * 2))
652
- shape = (batch_size, num_channels_latents, height, width)
653
-
654
- image_latents = image_ids = None
655
- if image is not None:
656
- image = image.to(device=device, dtype=dtype)
657
- if image.shape[1] != self.latent_channels:
658
- image_latents = self._encode_vae_image(image=image, generator=generator)
659
- else:
660
- image_latents = image
661
- if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
662
- # expand init_latents for batch_size
663
- additional_image_per_prompt = batch_size // image_latents.shape[0]
664
- image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0)
665
- elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
666
- raise ValueError(
667
- f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
668
- )
669
- else:
670
- image_latents = torch.cat([image_latents], dim=0)
671
-
672
- image_latent_height, image_latent_width = image_latents.shape[2:]
673
- image_latents = self._pack_latents(
674
- image_latents, batch_size, num_channels_latents, image_latent_height, image_latent_width
675
- )
676
- image_ids = self._prepare_latent_image_ids(
677
- batch_size, image_latent_height // 2, image_latent_width // 2, device, dtype
678
- )
679
- # image ids are the same as latent ids with the first dimension set to 1 instead of 0
680
- image_ids[..., 0] = 1
681
-
682
- latent_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
683
-
684
- if latents is None:
685
- latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
686
- latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
687
- else:
688
- latents = latents.to(device=device, dtype=dtype)
689
-
690
- return latents, image_latents, latent_ids, image_ids
691
-
692
- @property
693
- def guidance_scale(self):
694
- return self._guidance_scale
695
-
696
- @property
697
- def joint_attention_kwargs(self):
698
- return self._joint_attention_kwargs
699
-
700
- @property
701
- def num_timesteps(self):
702
- return self._num_timesteps
703
-
704
- @property
705
- def current_timestep(self):
706
- return self._current_timestep
707
-
708
- @property
709
- def interrupt(self):
710
- return self._interrupt
711
-
712
- @torch.no_grad()
713
- @replace_example_docstring(EXAMPLE_DOC_STRING)
714
- def __call__(
715
- self,
716
- image: Optional[PipelineImageInput] = None,
717
- prompt: Union[str, List[str]] = None,
718
- prompt_2: Optional[Union[str, List[str]]] = None,
719
- negative_prompt: Union[str, List[str]] = None,
720
- negative_prompt_2: Optional[Union[str, List[str]]] = None,
721
- true_cfg_scale: float = 1.0,
722
- height: Optional[int] = None,
723
- width: Optional[int] = None,
724
- num_inference_steps: int = 28,
725
- sigmas: Optional[List[float]] = None,
726
- guidance_scale: float = 3.5,
727
- num_images_per_prompt: Optional[int] = 1,
728
- generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
729
- latents: Optional[torch.FloatTensor] = None,
730
- prompt_embeds: Optional[torch.FloatTensor] = None,
731
- pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
732
- ip_adapter_image: Optional[PipelineImageInput] = None,
733
- ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
734
- negative_ip_adapter_image: Optional[PipelineImageInput] = None,
735
- negative_ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
736
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
737
- negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
738
- output_type: Optional[str] = "pil",
739
- return_dict: bool = True,
740
- joint_attention_kwargs: Optional[Dict[str, Any]] = None,
741
- callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
742
- callback_on_step_end_tensor_inputs: List[str] = ["latents"],
743
- max_sequence_length: int = 512,
744
- max_area: int = 1024**2,
745
- _auto_resize: bool = True,
746
- ):
747
- r"""
748
- Function invoked when calling the pipeline for generation.
749
-
750
- Args:
751
- image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
752
- `Image`, numpy array or tensor representing an image batch to be used as the starting point. For both
753
- numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list
754
- or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a
755
- list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image
756
- latents as `image`, but if passing latents directly it is not encoded again.
757
- prompt (`str` or `List[str]`, *optional*):
758
- The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
759
- instead.
760
- prompt_2 (`str` or `List[str]`, *optional*):
761
- The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
762
- will be used instead.
763
- negative_prompt (`str` or `List[str]`, *optional*):
764
- The prompt or prompts not to guide the image generation. If not defined, one has to pass
765
- `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `true_cfg_scale` is
766
- not greater than `1`).
767
- negative_prompt_2 (`str` or `List[str]`, *optional*):
768
- The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
769
- `text_encoder_2`. If not defined, `negative_prompt` is used in all the text-encoders.
770
- true_cfg_scale (`float`, *optional*, defaults to 1.0):
771
- When > 1.0 and a provided `negative_prompt`, enables true classifier-free guidance.
772
- height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
773
- The height in pixels of the generated image. This is set to 1024 by default for the best results.
774
- width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
775
- The width in pixels of the generated image. This is set to 1024 by default for the best results.
776
- num_inference_steps (`int`, *optional*, defaults to 50):
777
- The number of denoising steps. More denoising steps usually lead to a higher quality image at the
778
- expense of slower inference.
779
- sigmas (`List[float]`, *optional*):
780
- Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
781
- their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
782
- will be used.
783
- guidance_scale (`float`, *optional*, defaults to 3.5):
784
- Guidance scale as defined in [Classifier-Free Diffusion
785
- Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2.
786
- of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting
787
- `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to
788
- the text `prompt`, usually at the expense of lower image quality.
789
- num_images_per_prompt (`int`, *optional*, defaults to 1):
790
- The number of images to generate per prompt.
791
- generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
792
- One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
793
- to make generation deterministic.
794
- latents (`torch.FloatTensor`, *optional*):
795
- Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
796
- generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
797
- tensor will ge generated by sampling using the supplied random `generator`.
798
- prompt_embeds (`torch.FloatTensor`, *optional*):
799
- Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
800
- provided, text embeddings will be generated from `prompt` input argument.
801
- pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
802
- Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
803
- If not provided, pooled text embeddings will be generated from `prompt` input argument.
804
- ip_adapter_image: (`PipelineImageInput`, *optional*):
805
- Optional image input to work with IP Adapters.
806
- ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
807
- Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
808
- IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. If not
809
- provided, embeddings are computed from the `ip_adapter_image` input argument.
810
- negative_ip_adapter_image:
811
- (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
812
- negative_ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
813
- Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
814
- IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. If not
815
- provided, embeddings are computed from the `ip_adapter_image` input argument.
816
- negative_prompt_embeds (`torch.FloatTensor`, *optional*):
817
- Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
818
- weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
819
- argument.
820
- negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
821
- Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
822
- weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
823
- input argument.
824
- output_type (`str`, *optional*, defaults to `"pil"`):
825
- The output format of the generate image. Choose between
826
- [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
827
- return_dict (`bool`, *optional*, defaults to `True`):
828
- Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
829
- joint_attention_kwargs (`dict`, *optional*):
830
- A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
831
- `self.processor` in
832
- [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
833
- callback_on_step_end (`Callable`, *optional*):
834
- A function that calls at the end of each denoising steps during the inference. The function is called
835
- with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
836
- callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
837
- `callback_on_step_end_tensor_inputs`.
838
- callback_on_step_end_tensor_inputs (`List`, *optional*):
839
- The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
840
- will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
841
- `._callback_tensor_inputs` attribute of your pipeline class.
842
- max_sequence_length (`int` defaults to 512):
843
- Maximum sequence length to use with the `prompt`.
844
- max_area (`int`, defaults to `1024 ** 2`):
845
- The maximum area of the generated image in pixels. The height and width will be adjusted to fit this
846
- area while maintaining the aspect ratio.
847
-
848
- Examples:
849
-
850
- Returns:
851
- [`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
852
- is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
853
- images.
854
- """
855
-
856
- height = height or self.default_sample_size * self.vae_scale_factor
857
- width = width or self.default_sample_size * self.vae_scale_factor
858
-
859
- original_height, original_width = height, width
860
- aspect_ratio = width / height
861
- width = round((max_area * aspect_ratio) ** 0.5)
862
- height = round((max_area / aspect_ratio) ** 0.5)
863
-
864
- multiple_of = self.vae_scale_factor * 2
865
- width = width // multiple_of * multiple_of
866
- height = height // multiple_of * multiple_of
867
-
868
- if height != original_height or width != original_width:
869
- logger.warning(
870
- f"Generation `height` and `width` have been adjusted to {height} and {width} to fit the model requirements."
871
- )
872
-
873
- # 1. Check inputs. Raise error if not correct
874
- self.check_inputs(
875
- prompt,
876
- prompt_2,
877
- height,
878
- width,
879
- negative_prompt=negative_prompt,
880
- negative_prompt_2=negative_prompt_2,
881
- prompt_embeds=prompt_embeds,
882
- negative_prompt_embeds=negative_prompt_embeds,
883
- pooled_prompt_embeds=pooled_prompt_embeds,
884
- negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
885
- callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
886
- max_sequence_length=max_sequence_length,
887
- )
888
-
889
- self._guidance_scale = guidance_scale
890
- self._joint_attention_kwargs = joint_attention_kwargs
891
- self._current_timestep = None
892
- self._interrupt = False
893
-
894
- # 2. Define call parameters
895
- if prompt is not None and isinstance(prompt, str):
896
- batch_size = 1
897
- elif prompt is not None and isinstance(prompt, list):
898
- batch_size = len(prompt)
899
- else:
900
- batch_size = prompt_embeds.shape[0]
901
-
902
- device = self._execution_device
903
-
904
- lora_scale = (
905
- self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
906
- )
907
- has_neg_prompt = negative_prompt is not None or (
908
- negative_prompt_embeds is not None and negative_pooled_prompt_embeds is not None
909
- )
910
- do_true_cfg = true_cfg_scale > 1 and has_neg_prompt
911
- (
912
- prompt_embeds,
913
- pooled_prompt_embeds,
914
- text_ids,
915
- ) = self.encode_prompt(
916
- prompt=prompt,
917
- prompt_2=prompt_2,
918
- prompt_embeds=prompt_embeds,
919
- pooled_prompt_embeds=pooled_prompt_embeds,
920
- device=device,
921
- num_images_per_prompt=num_images_per_prompt,
922
- max_sequence_length=max_sequence_length,
923
- lora_scale=lora_scale,
924
- )
925
- if do_true_cfg:
926
- (
927
- negative_prompt_embeds,
928
- negative_pooled_prompt_embeds,
929
- negative_text_ids,
930
- ) = self.encode_prompt(
931
- prompt=negative_prompt,
932
- prompt_2=negative_prompt_2,
933
- prompt_embeds=negative_prompt_embeds,
934
- pooled_prompt_embeds=negative_pooled_prompt_embeds,
935
- device=device,
936
- num_images_per_prompt=num_images_per_prompt,
937
- max_sequence_length=max_sequence_length,
938
- lora_scale=lora_scale,
939
- )
940
-
941
- # 3. Preprocess image
942
- if image is not None and not (isinstance(image, torch.Tensor) and image.size(1) == self.latent_channels):
943
- img = image[0] if isinstance(image, list) else image
944
- image_height, image_width = self.image_processor.get_default_height_width(img)
945
- aspect_ratio = image_width / image_height
946
- if _auto_resize:
947
- # Kontext is trained on specific resolutions, using one of them is recommended
948
- _, image_width, image_height = min(
949
- (abs(aspect_ratio - w / h), w, h) for w, h in PREFERRED_KONTEXT_RESOLUTIONS
950
- )
951
- image_width = image_width // multiple_of * multiple_of
952
- image_height = image_height // multiple_of * multiple_of
953
- image = self.image_processor.resize(image, image_height, image_width)
954
- image = self.image_processor.preprocess(image, image_height, image_width)
955
-
956
- # 4. Prepare latent variables
957
- num_channels_latents = self.transformer.config.in_channels // 4
958
- latents, image_latents, latent_ids, image_ids = self.prepare_latents(
959
- image,
960
- batch_size * num_images_per_prompt,
961
- num_channels_latents,
962
- height,
963
- width,
964
- prompt_embeds.dtype,
965
- device,
966
- generator,
967
- latents,
968
- )
969
- if image_ids is not None:
970
- latent_ids = torch.cat([latent_ids, image_ids], dim=0) # dim 0 is sequence dimension
971
-
972
- # 5. Prepare timesteps
973
- sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
974
- image_seq_len = latents.shape[1]
975
- mu = calculate_shift(
976
- image_seq_len,
977
- self.scheduler.config.get("base_image_seq_len", 256),
978
- self.scheduler.config.get("max_image_seq_len", 4096),
979
- self.scheduler.config.get("base_shift", 0.5),
980
- self.scheduler.config.get("max_shift", 1.15),
981
- )
982
- timesteps, num_inference_steps = retrieve_timesteps(
983
- self.scheduler,
984
- num_inference_steps,
985
- device,
986
- sigmas=sigmas,
987
- mu=mu,
988
- )
989
- num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
990
- self._num_timesteps = len(timesteps)
991
-
992
- # handle guidance
993
- if self.transformer.config.guidance_embeds:
994
- guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
995
- guidance = guidance.expand(latents.shape[0])
996
- else:
997
- guidance = None
998
-
999
- if (ip_adapter_image is not None or ip_adapter_image_embeds is not None) and (
1000
- negative_ip_adapter_image is None and negative_ip_adapter_image_embeds is None
1001
- ):
1002
- negative_ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8)
1003
- negative_ip_adapter_image = [negative_ip_adapter_image] * self.transformer.encoder_hid_proj.num_ip_adapters
1004
-
1005
- elif (ip_adapter_image is None and ip_adapter_image_embeds is None) and (
1006
- negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None
1007
- ):
1008
- ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8)
1009
- ip_adapter_image = [ip_adapter_image] * self.transformer.encoder_hid_proj.num_ip_adapters
1010
-
1011
- if self.joint_attention_kwargs is None:
1012
- self._joint_attention_kwargs = {}
1013
-
1014
- image_embeds = None
1015
- negative_image_embeds = None
1016
- if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
1017
- image_embeds = self.prepare_ip_adapter_image_embeds(
1018
- ip_adapter_image,
1019
- ip_adapter_image_embeds,
1020
- device,
1021
- batch_size * num_images_per_prompt,
1022
- )
1023
- if negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None:
1024
- negative_image_embeds = self.prepare_ip_adapter_image_embeds(
1025
- negative_ip_adapter_image,
1026
- negative_ip_adapter_image_embeds,
1027
- device,
1028
- batch_size * num_images_per_prompt,
1029
- )
1030
-
1031
- # 6. Denoising loop
1032
- with self.progress_bar(total=num_inference_steps) as progress_bar:
1033
- for i, t in enumerate(timesteps):
1034
- if self.interrupt:
1035
- continue
1036
-
1037
- self._current_timestep = t
1038
- if image_embeds is not None:
1039
- self._joint_attention_kwargs["ip_adapter_image_embeds"] = image_embeds
1040
-
1041
- latent_model_input = latents
1042
- if image_latents is not None:
1043
- latent_model_input = torch.cat([latents, image_latents], dim=1)
1044
- timestep = t.expand(latents.shape[0]).to(latents.dtype)
1045
-
1046
- noise_pred = self.transformer(
1047
- hidden_states=latent_model_input,
1048
- timestep=timestep / 1000,
1049
- guidance=guidance,
1050
- pooled_projections=pooled_prompt_embeds,
1051
- encoder_hidden_states=prompt_embeds,
1052
- txt_ids=text_ids,
1053
- img_ids=latent_ids,
1054
- joint_attention_kwargs=self.joint_attention_kwargs,
1055
- return_dict=False,
1056
- )[0]
1057
- noise_pred = noise_pred[:, : latents.size(1)]
1058
-
1059
- if do_true_cfg:
1060
- if negative_image_embeds is not None:
1061
- self._joint_attention_kwargs["ip_adapter_image_embeds"] = negative_image_embeds
1062
- neg_noise_pred = self.transformer(
1063
- hidden_states=latent_model_input,
1064
- timestep=timestep / 1000,
1065
- guidance=guidance,
1066
- pooled_projections=negative_pooled_prompt_embeds,
1067
- encoder_hidden_states=negative_prompt_embeds,
1068
- txt_ids=negative_text_ids,
1069
- img_ids=latent_ids,
1070
- joint_attention_kwargs=self.joint_attention_kwargs,
1071
- return_dict=False,
1072
- )[0]
1073
- neg_noise_pred = neg_noise_pred[:, : latents.size(1)]
1074
- noise_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred)
1075
-
1076
- # compute the previous noisy sample x_t -> x_t-1
1077
- latents_dtype = latents.dtype
1078
- latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
1079
-
1080
- if latents.dtype != latents_dtype:
1081
- if torch.backends.mps.is_available():
1082
- # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
1083
- latents = latents.to(latents_dtype)
1084
-
1085
- if callback_on_step_end is not None:
1086
- callback_kwargs = {}
1087
- for k in callback_on_step_end_tensor_inputs:
1088
- callback_kwargs[k] = locals()[k]
1089
- callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
1090
-
1091
- latents = callback_outputs.pop("latents", latents)
1092
- prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
1093
-
1094
- # call the callback, if provided
1095
- if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
1096
- progress_bar.update()
1097
-
1098
- if XLA_AVAILABLE:
1099
- xm.mark_step()
1100
-
1101
- self._current_timestep = None
1102
-
1103
- if output_type == "latent":
1104
- image = latents
1105
- else:
1106
- latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
1107
- latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
1108
- image = self.vae.decode(latents, return_dict=False)[0]
1109
- image = self.image_processor.postprocess(image, output_type=output_type)
1110
-
1111
- # Offload all models
1112
- self.maybe_free_model_hooks()
1113
-
1114
- if not return_dict:
1115
- return (image,)
1116
-
1117
- return FluxPipelineOutput(images=image)