import gradio as gr import numpy as np import spaces import torch import random from PIL import Image from diffusers import FluxKontextPipeline from diffusers.utils import load_image MAX_SEED = np.iinfo(np.int32).max pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16).to("cuda") @spaces.GPU def infer(input_image, prompt, seed=42, randomize_seed=False, guidance_scale=2.5, steps=28, progress=gr.Progress(track_tqdm=True)): """ Perform image editing using the FLUX.1 Kontext pipeline. This function takes an input image and a text prompt to generate a modified version of the image based on the provided instructions. It uses the FLUX.1 Kontext model for contextual image editing tasks. Args: input_image (PIL.Image.Image): The input image to be edited. Will be converted to RGB format if not already in that format. prompt (str): Text description of the desired edit to apply to the image. Examples: "Remove glasses", "Add a hat", "Change background to beach". seed (int, optional): Random seed for reproducible generation. Defaults to 42. Must be between 0 and MAX_SEED (2^31 - 1). randomize_seed (bool, optional): If True, generates a random seed instead of using the provided seed value. Defaults to False. guidance_scale (float, optional): Controls how closely the model follows the prompt. Higher values mean stronger adherence to the prompt but may reduce image quality. Range: 1.0-10.0. Defaults to 2.5. steps (int, optional): Controls how many steps to run the diffusion model for. Range: 1-30. Defaults to 28. progress (gr.Progress, optional): Gradio progress tracker for monitoring generation progress. Defaults to gr.Progress(track_tqdm=True). Returns: tuple: A 3-tuple containing: - PIL.Image.Image: The generated/edited image - int: The seed value used for generation (useful when randomize_seed=True) - gr.update: Gradio update object to make the reuse button visible Example: >>> edited_image, used_seed, button_update = infer( ... input_image=my_image, ... prompt="Add sunglasses", ... seed=123, ... randomize_seed=False, ... guidance_scale=2.5 ... ) """ if randomize_seed: seed = random.randint(0, MAX_SEED) if input_image: input_image = input_image.convert("RGB") image = pipe( image=input_image, prompt=prompt, guidance_scale=guidance_scale, num_inference_steps=steps, generator=torch.Generator().manual_seed(seed), ).images[0] else: image = pipe( prompt=prompt, guidance_scale=guidance_scale, num_inference_steps=steps, generator=torch.Generator().manual_seed(seed), ).images[0] return image, seed, gr.update(visible=True) css=""" #col-container { margin: 0 auto; max-width: 960px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f"""# FLUX.1 Kontext [dev] Image editing and manipulation model guidance-distilled from FLUX.1 Kontext [pro], [[blog]](https://bfl.ai/announcements/flux-1-kontext-dev) [[model]](https://huggingface.co/black-forest-labs/FLUX.1-Kontext-dev) """) with gr.Row(): with gr.Column(): input_image = gr.Image(label="Upload the image for editing", type="pil") with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt for editing (e.g., 'Remove glasses', 'Add a hat')", container=False, ) run_button = gr.Button("Run", scale=0) with gr.Accordion("Advanced Settings", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) guidance_scale = gr.Slider( label="Guidance Scale", minimum=1, maximum=10, step=0.1, value=2.5, ) steps = gr.Slider( label="Steps", minimum=1, maximum=30, value=28, step=1 ) with gr.Column(): result = gr.Image(label="Result", show_label=False, interactive=False) reuse_button = gr.Button("Reuse this image", visible=False) gr.on( triggers=[run_button.click, prompt.submit], fn = infer, inputs = [input_image, prompt, seed, randomize_seed, guidance_scale, steps], outputs = [result, seed, reuse_button] ) reuse_button.click( fn = lambda image: image, inputs = [result], outputs = [input_image] ) demo.launch(mcp_server=True)