HiDream-ai-dev / inference.py
blanchon's picture
first commit
755bbb7
import torch
import argparse
from hi_diffusers import HiDreamImagePipeline
from hi_diffusers import HiDreamImageTransformer2DModel
from hi_diffusers.schedulers.fm_solvers_unipc import FlowUniPCMultistepScheduler
from hi_diffusers.schedulers.flash_flow_match import FlashFlowMatchEulerDiscreteScheduler
from transformers import LlamaForCausalLM, PreTrainedTokenizerFast
parser = argparse.ArgumentParser()
parser.add_argument("--model_type", type=str, default="dev")
args = parser.parse_args()
model_type = args.model_type
MODEL_PREFIX = "HiDream-ai"
LLAMA_MODEL_NAME = "meta-llama/Meta-Llama-3.1-8B-Instruct"
# Model configurations
MODEL_CONFIGS = {
"dev": {
"path": f"{MODEL_PREFIX}/HiDream-I1-Dev",
"guidance_scale": 0.0,
"num_inference_steps": 28,
"shift": 6.0,
"scheduler": FlashFlowMatchEulerDiscreteScheduler
},
"full": {
"path": f"{MODEL_PREFIX}/HiDream-I1-Full",
"guidance_scale": 5.0,
"num_inference_steps": 50,
"shift": 3.0,
"scheduler": FlowUniPCMultistepScheduler
},
"fast": {
"path": f"{MODEL_PREFIX}/HiDream-I1-Fast",
"guidance_scale": 0.0,
"num_inference_steps": 16,
"shift": 3.0,
"scheduler": FlashFlowMatchEulerDiscreteScheduler
}
}
# Resolution options
RESOLUTION_OPTIONS = [
"1024 Γ— 1024 (Square)",
"768 Γ— 1360 (Portrait)",
"1360 Γ— 768 (Landscape)",
"880 Γ— 1168 (Portrait)",
"1168 Γ— 880 (Landscape)",
"1248 Γ— 832 (Landscape)",
"832 Γ— 1248 (Portrait)"
]
# Load models
def load_models(model_type):
config = MODEL_CONFIGS[model_type]
pretrained_model_name_or_path = config["path"]
scheduler = FlowUniPCMultistepScheduler(num_train_timesteps=1000, shift=config["shift"], use_dynamic_shifting=False)
tokenizer_4 = PreTrainedTokenizerFast.from_pretrained(
LLAMA_MODEL_NAME,
use_fast=False)
text_encoder_4 = LlamaForCausalLM.from_pretrained(
LLAMA_MODEL_NAME,
output_hidden_states=True,
output_attentions=True,
torch_dtype=torch.bfloat16).to("cuda")
transformer = HiDreamImageTransformer2DModel.from_pretrained(
pretrained_model_name_or_path,
subfolder="transformer",
torch_dtype=torch.bfloat16).to("cuda")
pipe = HiDreamImagePipeline.from_pretrained(
pretrained_model_name_or_path,
scheduler=scheduler,
tokenizer_4=tokenizer_4,
text_encoder_4=text_encoder_4,
torch_dtype=torch.bfloat16
).to("cuda", torch.bfloat16)
pipe.transformer = transformer
return pipe, config
# Parse resolution string to get height and width
def parse_resolution(resolution_str):
if "1024 Γ— 1024" in resolution_str:
return 1024, 1024
elif "768 Γ— 1360" in resolution_str:
return 768, 1360
elif "1360 Γ— 768" in resolution_str:
return 1360, 768
elif "880 Γ— 1168" in resolution_str:
return 880, 1168
elif "1168 Γ— 880" in resolution_str:
return 1168, 880
elif "1248 Γ— 832" in resolution_str:
return 1248, 832
elif "832 Γ— 1248" in resolution_str:
return 832, 1248
else:
return 1024, 1024 # Default fallback
# Generate image function
def generate_image(pipe, model_type, prompt, resolution, seed):
# Get configuration for current model
config = MODEL_CONFIGS[model_type]
guidance_scale = config["guidance_scale"]
num_inference_steps = config["num_inference_steps"]
# Parse resolution
height, width = parse_resolution(resolution)
# Handle seed
if seed == -1:
seed = torch.randint(0, 1000000, (1,)).item()
generator = torch.Generator("cuda").manual_seed(seed)
images = pipe(
prompt,
height=height,
width=width,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
num_images_per_prompt=1,
generator=generator
).images
return images[0], seed
# Initialize with default model
print("Loading default model (full)...")
pipe, _ = load_models(model_type)
print("Model loaded successfully!")
prompt = "A cat holding a sign that says \"Hi-Dreams.ai\"."
resolution = "1024 Γ— 1024 (Square)"
seed = -1
image, seed = generate_image(pipe, model_type, prompt, resolution, seed)
image.save("output.png")