import math import torch from torch import nn import torch.nn.functional as F from .attention import FeedForwardSwiGLU from torch.distributed.nn.functional import all_gather _LOAD_BALANCING_LOSS = [] def save_load_balancing_loss(loss): global _LOAD_BALANCING_LOSS _LOAD_BALANCING_LOSS.append(loss) def clear_load_balancing_loss(): global _LOAD_BALANCING_LOSS _LOAD_BALANCING_LOSS.clear() def get_load_balancing_loss(): global _LOAD_BALANCING_LOSS return _LOAD_BALANCING_LOSS def batched_load_balancing_loss(): aux_losses_arr = get_load_balancing_loss() alpha = aux_losses_arr[0][-1] Pi = torch.stack([ent[1] for ent in aux_losses_arr], dim=0) fi = torch.stack([ent[2] for ent in aux_losses_arr], dim=0) fi_list = all_gather(fi) fi = torch.stack(fi_list, 0).mean(0) aux_loss = (Pi * fi).sum(-1).mean() * alpha return aux_loss # Modified from https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py class MoEGate(nn.Module): def __init__(self, embed_dim, num_routed_experts=4, num_activated_experts=2, aux_loss_alpha=0.01): super().__init__() self.top_k = num_activated_experts self.n_routed_experts = num_routed_experts self.scoring_func = 'softmax' self.alpha = aux_loss_alpha self.seq_aux = False # topk selection algorithm self.norm_topk_prob = False self.gating_dim = embed_dim self.weight = nn.Parameter(torch.empty((self.n_routed_experts, self.gating_dim))) self.reset_parameters() def reset_parameters(self) -> None: import torch.nn.init as init init.kaiming_uniform_(self.weight, a=math.sqrt(5)) def forward(self, hidden_states): bsz, seq_len, h = hidden_states.shape # print(bsz, seq_len, h) ### compute gating score hidden_states = hidden_states.view(-1, h) logits = F.linear(hidden_states, self.weight, None) if self.scoring_func == 'softmax': scores = logits.softmax(dim=-1) else: raise NotImplementedError(f'insupportable scoring function for MoE gating: {self.scoring_func}') ### select top-k experts topk_weight, topk_idx = torch.topk(scores, k=self.top_k, dim=-1, sorted=False) ### norm gate to sum 1 if self.top_k > 1 and self.norm_topk_prob: denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20 topk_weight = topk_weight / denominator ### expert-level computation auxiliary loss if self.training and self.alpha > 0.0: scores_for_aux = scores aux_topk = self.top_k # always compute aux loss based on the naive greedy topk method topk_idx_for_aux_loss = topk_idx.view(bsz, -1) if self.seq_aux: scores_for_seq_aux = scores_for_aux.view(bsz, seq_len, -1) ce = torch.zeros(bsz, self.n_routed_experts, device=hidden_states.device) ce.scatter_add_(1, topk_idx_for_aux_loss, torch.ones(bsz, seq_len * aux_topk, device=hidden_states.device)).div_(seq_len * aux_topk / self.n_routed_experts) aux_loss = (ce * scores_for_seq_aux.mean(dim = 1)).sum(dim = 1).mean() * self.alpha else: mask_ce = F.one_hot(topk_idx_for_aux_loss.view(-1), num_classes=self.n_routed_experts) ce = mask_ce.float().mean(0) Pi = scores_for_aux.mean(0) fi = ce * self.n_routed_experts aux_loss = (Pi * fi).sum() * self.alpha save_load_balancing_loss((aux_loss, Pi, fi, self.alpha)) else: aux_loss = None return topk_idx, topk_weight, aux_loss # Modified from https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py class MOEFeedForwardSwiGLU(nn.Module): def __init__( self, dim: int, hidden_dim: int, num_routed_experts: int, num_activated_experts: int, ): super().__init__() self.shared_experts = FeedForwardSwiGLU(dim, hidden_dim // 2) self.experts = nn.ModuleList([FeedForwardSwiGLU(dim, hidden_dim) for i in range(num_routed_experts)]) self.gate = MoEGate( embed_dim = dim, num_routed_experts = num_routed_experts, num_activated_experts = num_activated_experts ) self.num_activated_experts = num_activated_experts def forward(self, x): wtype = x.dtype identity = x orig_shape = x.shape topk_idx, topk_weight, aux_loss = self.gate(x) x = x.view(-1, x.shape[-1]) flat_topk_idx = topk_idx.view(-1) if self.training: x = x.repeat_interleave(self.num_activated_experts, dim=0) y = torch.empty_like(x, dtype=wtype) for i, expert in enumerate(self.experts): y[flat_topk_idx == i] = expert(x[flat_topk_idx == i]).to(dtype=wtype) y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1) y = y.view(*orig_shape).to(dtype=wtype) #y = AddAuxiliaryLoss.apply(y, aux_loss) else: y = self.moe_infer(x, flat_topk_idx, topk_weight.view(-1, 1)).view(*orig_shape) y = y + self.shared_experts(identity) return y @torch.no_grad() def moe_infer(self, x, flat_expert_indices, flat_expert_weights): expert_cache = torch.zeros_like(x) idxs = flat_expert_indices.argsort() tokens_per_expert = flat_expert_indices.bincount().cpu().numpy().cumsum(0) token_idxs = idxs // self.num_activated_experts for i, end_idx in enumerate(tokens_per_expert): start_idx = 0 if i == 0 else tokens_per_expert[i-1] if start_idx == end_idx: continue expert = self.experts[i] exp_token_idx = token_idxs[start_idx:end_idx] expert_tokens = x[exp_token_idx] expert_out = expert(expert_tokens) expert_out.mul_(flat_expert_weights[idxs[start_idx:end_idx]]) # for fp16 and other dtype expert_cache = expert_cache.to(expert_out.dtype) expert_cache.scatter_reduce_(0, exp_token_idx.view(-1, 1).repeat(1, x.shape[-1]), expert_out, reduce='sum') return expert_cache