Spaces:
Paused
Paused
| from fastapi import FastAPI, File, Form, UploadFile, HTTPException | |
| from fastapi.responses import JSONResponse, StreamingResponse | |
| import torch | |
| from transformers import AutoConfig, AutoModelForCausalLM | |
| from janus.models import MultiModalityCausalLM, VLChatProcessor | |
| from PIL import Image | |
| import numpy as np | |
| import io | |
| app = FastAPI() | |
| # Load model and processor | |
| model_path = "deepseek-ai/Janus-1.3B" | |
| config = AutoConfig.from_pretrained(model_path) | |
| language_config = config.language_config | |
| language_config._attn_implementation = 'eager' | |
| vl_gpt = AutoModelForCausalLM.from_pretrained(model_path, | |
| language_config=language_config, | |
| trust_remote_code=True) | |
| vl_gpt = vl_gpt.to(torch.bfloat16).cuda() | |
| vl_chat_processor = VLChatProcessor.from_pretrained(model_path) | |
| tokenizer = vl_chat_processor.tokenizer | |
| cuda_device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| def multimodal_understanding(image_data, question, seed, top_p, temperature): | |
| torch.cuda.empty_cache() | |
| torch.manual_seed(seed) | |
| np.random.seed(seed) | |
| torch.cuda.manual_seed(seed) | |
| conversation = [ | |
| { | |
| "role": "User", | |
| "content": f"<image_placeholder>\n{question}", | |
| "images": [image_data], | |
| }, | |
| {"role": "Assistant", "content": ""}, | |
| ] | |
| pil_images = [Image.open(io.BytesIO(image_data))] | |
| prepare_inputs = vl_chat_processor( | |
| conversations=conversation, images=pil_images, force_batchify=True | |
| ).to(cuda_device, dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float16) | |
| inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs) | |
| outputs = vl_gpt.language_model.generate( | |
| inputs_embeds=inputs_embeds, | |
| attention_mask=prepare_inputs.attention_mask, | |
| pad_token_id=tokenizer.eos_token_id, | |
| bos_token_id=tokenizer.bos_token_id, | |
| eos_token_id=tokenizer.eos_token_id, | |
| max_new_tokens=512, | |
| do_sample=False if temperature == 0 else True, | |
| use_cache=True, | |
| temperature=temperature, | |
| top_p=top_p, | |
| ) | |
| answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True) | |
| return answer | |
| async def understand_image_and_question( | |
| file: UploadFile = File(...), | |
| question: str = Form(...), | |
| seed: int = Form(42), | |
| top_p: float = Form(0.95), | |
| temperature: float = Form(0.1) | |
| ): | |
| image_data = await file.read() | |
| response = multimodal_understanding(image_data, question, seed, top_p, temperature) | |
| return JSONResponse({"response": response}) | |
| def generate(input_ids, | |
| width, | |
| height, | |
| temperature: float = 1, | |
| parallel_size: int = 5, | |
| cfg_weight: float = 5, | |
| image_token_num_per_image: int = 576, | |
| patch_size: int = 16): | |
| torch.cuda.empty_cache() | |
| tokens = torch.zeros((parallel_size * 2, len(input_ids)), dtype=torch.int).to(cuda_device) | |
| for i in range(parallel_size * 2): | |
| tokens[i, :] = input_ids | |
| if i % 2 != 0: | |
| tokens[i, 1:-1] = vl_chat_processor.pad_id | |
| inputs_embeds = vl_gpt.language_model.get_input_embeddings()(tokens) | |
| generated_tokens = torch.zeros((parallel_size, image_token_num_per_image), dtype=torch.int).to(cuda_device) | |
| pkv = None | |
| for i in range(image_token_num_per_image): | |
| outputs = vl_gpt.language_model.model(inputs_embeds=inputs_embeds, use_cache=True, past_key_values=pkv) | |
| pkv = outputs.past_key_values | |
| hidden_states = outputs.last_hidden_state | |
| logits = vl_gpt.gen_head(hidden_states[:, -1, :]) | |
| logit_cond = logits[0::2, :] | |
| logit_uncond = logits[1::2, :] | |
| logits = logit_uncond + cfg_weight * (logit_cond - logit_uncond) | |
| probs = torch.softmax(logits / temperature, dim=-1) | |
| next_token = torch.multinomial(probs, num_samples=1) | |
| generated_tokens[:, i] = next_token.squeeze(dim=-1) | |
| next_token = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1) | |
| img_embeds = vl_gpt.prepare_gen_img_embeds(next_token) | |
| inputs_embeds = img_embeds.unsqueeze(dim=1) | |
| patches = vl_gpt.gen_vision_model.decode_code( | |
| generated_tokens.to(dtype=torch.int), | |
| shape=[parallel_size, 8, width // patch_size, height // patch_size] | |
| ) | |
| return generated_tokens.to(dtype=torch.int), patches | |
| def unpack(dec, width, height, parallel_size=5): | |
| dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1) | |
| dec = np.clip((dec + 1) / 2 * 255, 0, 255) | |
| visual_img = np.zeros((parallel_size, width, height, 3), dtype=np.uint8) | |
| visual_img[:, :, :] = dec | |
| return visual_img | |
| def generate_image(prompt, seed, guidance): | |
| torch.cuda.empty_cache() | |
| seed = seed if seed is not None else 12345 | |
| torch.manual_seed(seed) | |
| torch.cuda.manual_seed(seed) | |
| np.random.seed(seed) | |
| width = 384 | |
| height = 384 | |
| parallel_size = 5 | |
| with torch.no_grad(): | |
| messages = [{'role': 'User', 'content': prompt}, {'role': 'Assistant', 'content': ''}] | |
| text = vl_chat_processor.apply_sft_template_for_multi_turn_prompts( | |
| conversations=messages, | |
| sft_format=vl_chat_processor.sft_format, | |
| system_prompt='' | |
| ) | |
| text = text + vl_chat_processor.image_start_tag | |
| input_ids = torch.LongTensor(tokenizer.encode(text)) | |
| _, patches = generate(input_ids, width // 16 * 16, height // 16 * 16, cfg_weight=guidance, parallel_size=parallel_size) | |
| images = unpack(patches, width // 16 * 16, height // 16 * 16) | |
| return [Image.fromarray(images[i]).resize((1024, 1024), Image.LANCZOS) for i in range(parallel_size)] | |
| async def generate_images( | |
| prompt: str = Form(...), | |
| seed: int = Form(None), | |
| guidance: float = Form(5.0), | |
| ): | |
| try: | |
| images = generate_image(prompt, seed, guidance) | |
| def image_stream(): | |
| for img in images: | |
| buf = io.BytesIO() | |
| img.save(buf, format='PNG') | |
| buf.seek(0) | |
| yield buf.read() | |
| return StreamingResponse(image_stream(), media_type="multipart/related") | |
| except Exception as e: | |
| raise HTTPException(status_code=500, detail=f"Image generation failed: {str(e)}") | |
| if __name__ == "__main__": | |
| import uvicorn | |
| uvicorn.run(app, host="0.0.0.0", port=8000) | |