Spaces:
Paused
Paused
from fastapi import FastAPI, File, Form, UploadFile, HTTPException | |
from fastapi.responses import JSONResponse, StreamingResponse | |
import torch | |
from transformers import AutoConfig, AutoModelForCausalLM | |
from janus.models import MultiModalityCausalLM, VLChatProcessor | |
from PIL import Image | |
import numpy as np | |
import io | |
app = FastAPI() | |
# Load model and processor | |
model_path = "deepseek-ai/Janus-1.3B" | |
config = AutoConfig.from_pretrained(model_path) | |
language_config = config.language_config | |
language_config._attn_implementation = 'eager' | |
vl_gpt = AutoModelForCausalLM.from_pretrained(model_path, | |
language_config=language_config, | |
trust_remote_code=True) | |
vl_gpt = vl_gpt.to(torch.bfloat16).cuda() | |
vl_chat_processor = VLChatProcessor.from_pretrained(model_path) | |
tokenizer = vl_chat_processor.tokenizer | |
cuda_device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
def multimodal_understanding(image_data, question, seed, top_p, temperature): | |
torch.cuda.empty_cache() | |
torch.manual_seed(seed) | |
np.random.seed(seed) | |
torch.cuda.manual_seed(seed) | |
conversation = [ | |
{ | |
"role": "User", | |
"content": f"<image_placeholder>\n{question}", | |
"images": [image_data], | |
}, | |
{"role": "Assistant", "content": ""}, | |
] | |
pil_images = [Image.open(io.BytesIO(image_data))] | |
prepare_inputs = vl_chat_processor( | |
conversations=conversation, images=pil_images, force_batchify=True | |
).to(cuda_device, dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float16) | |
inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs) | |
outputs = vl_gpt.language_model.generate( | |
inputs_embeds=inputs_embeds, | |
attention_mask=prepare_inputs.attention_mask, | |
pad_token_id=tokenizer.eos_token_id, | |
bos_token_id=tokenizer.bos_token_id, | |
eos_token_id=tokenizer.eos_token_id, | |
max_new_tokens=512, | |
do_sample=False if temperature == 0 else True, | |
use_cache=True, | |
temperature=temperature, | |
top_p=top_p, | |
) | |
answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True) | |
return answer | |
async def understand_image_and_question( | |
file: UploadFile = File(...), | |
question: str = Form(...), | |
seed: int = Form(42), | |
top_p: float = Form(0.95), | |
temperature: float = Form(0.1) | |
): | |
image_data = await file.read() | |
response = multimodal_understanding(image_data, question, seed, top_p, temperature) | |
return JSONResponse({"response": response}) | |
def generate(input_ids, | |
width, | |
height, | |
temperature: float = 1, | |
parallel_size: int = 5, | |
cfg_weight: float = 5, | |
image_token_num_per_image: int = 576, | |
patch_size: int = 16): | |
torch.cuda.empty_cache() | |
tokens = torch.zeros((parallel_size * 2, len(input_ids)), dtype=torch.int).to(cuda_device) | |
for i in range(parallel_size * 2): | |
tokens[i, :] = input_ids | |
if i % 2 != 0: | |
tokens[i, 1:-1] = vl_chat_processor.pad_id | |
inputs_embeds = vl_gpt.language_model.get_input_embeddings()(tokens) | |
generated_tokens = torch.zeros((parallel_size, image_token_num_per_image), dtype=torch.int).to(cuda_device) | |
pkv = None | |
for i in range(image_token_num_per_image): | |
outputs = vl_gpt.language_model.model(inputs_embeds=inputs_embeds, use_cache=True, past_key_values=pkv) | |
pkv = outputs.past_key_values | |
hidden_states = outputs.last_hidden_state | |
logits = vl_gpt.gen_head(hidden_states[:, -1, :]) | |
logit_cond = logits[0::2, :] | |
logit_uncond = logits[1::2, :] | |
logits = logit_uncond + cfg_weight * (logit_cond - logit_uncond) | |
probs = torch.softmax(logits / temperature, dim=-1) | |
next_token = torch.multinomial(probs, num_samples=1) | |
generated_tokens[:, i] = next_token.squeeze(dim=-1) | |
next_token = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1) | |
img_embeds = vl_gpt.prepare_gen_img_embeds(next_token) | |
inputs_embeds = img_embeds.unsqueeze(dim=1) | |
patches = vl_gpt.gen_vision_model.decode_code( | |
generated_tokens.to(dtype=torch.int), | |
shape=[parallel_size, 8, width // patch_size, height // patch_size] | |
) | |
return generated_tokens.to(dtype=torch.int), patches | |
def unpack(dec, width, height, parallel_size=5): | |
dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1) | |
dec = np.clip((dec + 1) / 2 * 255, 0, 255) | |
visual_img = np.zeros((parallel_size, width, height, 3), dtype=np.uint8) | |
visual_img[:, :, :] = dec | |
return visual_img | |
def generate_image(prompt, seed, guidance): | |
torch.cuda.empty_cache() | |
seed = seed if seed is not None else 12345 | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed(seed) | |
np.random.seed(seed) | |
width = 384 | |
height = 384 | |
parallel_size = 5 | |
with torch.no_grad(): | |
messages = [{'role': 'User', 'content': prompt}, {'role': 'Assistant', 'content': ''}] | |
text = vl_chat_processor.apply_sft_template_for_multi_turn_prompts( | |
conversations=messages, | |
sft_format=vl_chat_processor.sft_format, | |
system_prompt='' | |
) | |
text = text + vl_chat_processor.image_start_tag | |
input_ids = torch.LongTensor(tokenizer.encode(text)) | |
_, patches = generate(input_ids, width // 16 * 16, height // 16 * 16, cfg_weight=guidance, parallel_size=parallel_size) | |
images = unpack(patches, width // 16 * 16, height // 16 * 16) | |
return [Image.fromarray(images[i]).resize((1024, 1024), Image.LANCZOS) for i in range(parallel_size)] | |
async def generate_images( | |
prompt: str = Form(...), | |
seed: int = Form(None), | |
guidance: float = Form(5.0), | |
): | |
try: | |
images = generate_image(prompt, seed, guidance) | |
def image_stream(): | |
for img in images: | |
buf = io.BytesIO() | |
img.save(buf, format='PNG') | |
buf.seek(0) | |
yield buf.read() | |
return StreamingResponse(image_stream(), media_type="multipart/related") | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Image generation failed: {str(e)}") | |
if __name__ == "__main__": | |
import uvicorn | |
uvicorn.run(app, host="0.0.0.0", port=8000) | |