Spaces:
Running
on
A10G
Running
on
A10G
MekkCyber
commited on
Commit
·
fa23c0d
1
Parent(s):
40a26a8
updating
Browse files- app.py +275 -135
- app_claude.py +678 -0
- requirements.txt +1 -1
app.py
CHANGED
@@ -5,6 +5,7 @@ import tempfile
|
|
5 |
from huggingface_hub import HfApi
|
6 |
from huggingface_hub import list_models
|
7 |
from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
|
|
8 |
from packaging import version
|
9 |
import os
|
10 |
|
@@ -13,10 +14,10 @@ def hello(profile: gr.OAuthProfile | None, oauth_token: gr.OAuthToken | None) ->
|
|
13 |
# ^ expect a gr.OAuthProfile object as input to get the user's profile
|
14 |
# if the user is not logged in, profile will be None
|
15 |
if profile is None:
|
16 |
-
return "Hello !"
|
17 |
-
return f"Hello {profile.name} ! Welcome to BitsAndBytes
|
18 |
|
19 |
-
def check_model_exists(oauth_token: gr.OAuthToken | None, username,
|
20 |
"""Check if a model exists in the user's Hugging Face repository."""
|
21 |
try:
|
22 |
models = list_models(author=username, token=oauth_token.token)
|
@@ -24,7 +25,7 @@ def check_model_exists(oauth_token: gr.OAuthToken | None, username, quantization
|
|
24 |
if quantized_model_name :
|
25 |
repo_name = f"{username}/{quantized_model_name}"
|
26 |
else :
|
27 |
-
repo_name = f"{username}/{model_name.split('/')[-1]}-BNB-
|
28 |
|
29 |
if repo_name in model_names:
|
30 |
return f"Model '{repo_name}' already exists in your repository."
|
@@ -33,7 +34,7 @@ def check_model_exists(oauth_token: gr.OAuthToken | None, username, quantization
|
|
33 |
except Exception as e:
|
34 |
return f"Error checking model existence: {str(e)}"
|
35 |
|
36 |
-
def create_model_card(model_name,
|
37 |
model_card = f"""---
|
38 |
base_model:
|
39 |
- {model_name}
|
@@ -42,17 +43,17 @@ base_model:
|
|
42 |
# {model_name} (Quantized)
|
43 |
|
44 |
## Description
|
45 |
-
This model is a quantized version of the original model `{model_name}`. It has been quantized using
|
46 |
|
47 |
## Quantization Details
|
48 |
-
- **Quantization Type**:
|
49 |
-
- **
|
50 |
-
- **
|
51 |
-
- **
|
|
|
52 |
|
53 |
## Usage
|
54 |
You can use this model in your applications by loading it directly from the Hugging Face Hub:
|
55 |
-
|
56 |
```python
|
57 |
from transformers import AutoModel
|
58 |
|
@@ -63,24 +64,33 @@ model = AutoModel.from_pretrained("{model_name}")"""
|
|
63 |
def load_model(model_name, quantization_config, auth_token) :
|
64 |
return AutoModel.from_pretrained(model_name, quantization_config=quantization_config, device_map="cpu", use_auth_token=auth_token.token)
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
else :
|
75 |
-
quantization_config = BitsAndBytesConfig(
|
76 |
-
load_in_8bit=True,
|
77 |
-
llm_int8_threshold=threshold,
|
78 |
-
)
|
79 |
-
model = load_model(model_name, quantization_config=quantization_config, auth_token=auth_token)
|
80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
return model
|
82 |
|
83 |
-
def save_model(model, model_name,
|
84 |
print("Saving quantized model")
|
85 |
with tempfile.TemporaryDirectory() as tmpdirname:
|
86 |
|
@@ -89,15 +99,15 @@ def save_model(model, model_name, quantization_type, threshold, quant_type_4, do
|
|
89 |
if quantized_model_name :
|
90 |
repo_name = f"{username}/{quantized_model_name}"
|
91 |
else :
|
92 |
-
repo_name = f"{username}/{model_name.split('/')[-1]}-BNB-
|
93 |
|
94 |
|
95 |
-
model_card = create_model_card(repo_name,
|
96 |
with open(os.path.join(tmpdirname, "README.md"), "w") as f:
|
97 |
f.write(model_card)
|
98 |
# Push to Hub
|
99 |
api = HfApi(token=auth_token.token)
|
100 |
-
api.create_repo(repo_name, exist_ok=True)
|
101 |
api.upload_folder(
|
102 |
folder_path=tmpdirname,
|
103 |
repo_id=repo_name,
|
@@ -105,30 +115,17 @@ def save_model(model, model_name, quantization_type, threshold, quant_type_4, do
|
|
105 |
)
|
106 |
return f'<h1> 🤗 DONE</h1><br/>Find your repo here: <a href="https://huggingface.co/{repo_name}" target="_blank" style="text-decoration:underline">{repo_name}</a>'
|
107 |
|
108 |
-
def
|
109 |
-
try:
|
110 |
-
float(value)
|
111 |
-
return True
|
112 |
-
except ValueError:
|
113 |
-
return False
|
114 |
-
|
115 |
-
def quantize_and_save(profile: gr.OAuthProfile | None, oauth_token: gr.OAuthToken | None, model_name, quantization_type, threshold, quant_type_4, double_quant_4, quantized_model_name):
|
116 |
if oauth_token is None :
|
117 |
return "Error : Please Sign In to your HuggingFace account to use the quantizer"
|
118 |
if not profile:
|
119 |
return "Error: Please Sign In to your HuggingFace account to use the quantizer"
|
120 |
-
exists_message = check_model_exists(oauth_token, profile.username,
|
121 |
if exists_message :
|
122 |
return exists_message
|
123 |
-
|
124 |
-
if not is_float(threshold) :
|
125 |
-
return "Threshold must be a float"
|
126 |
-
|
127 |
-
threshold = float(threshold)
|
128 |
-
|
129 |
# try:
|
130 |
-
quantized_model = quantize_model(model_name,
|
131 |
-
return save_model(quantized_model, model_name,
|
132 |
# except Exception as e :
|
133 |
# print(e)
|
134 |
# return f"An error occurred: {str(e)}"
|
@@ -136,16 +133,183 @@ def quantize_and_save(profile: gr.OAuthProfile | None, oauth_token: gr.OAuthToke
|
|
136 |
|
137 |
css="""/* Custom CSS to allow scrolling */
|
138 |
.gradio-container {overflow-y: auto;}
|
139 |
-
|
140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
}
|
|
|
142 |
"""
|
|
|
|
|
143 |
with gr.Blocks(theme=gr.themes.Ocean(), css=css) as demo:
|
144 |
gr.Markdown(
|
145 |
"""
|
146 |
-
# 🤗 LLM Model BitsAndBytes
|
147 |
|
148 |
-
Quantize your favorite Hugging Face models using BitsAndBytes and save them to your profile!
|
149 |
"""
|
150 |
)
|
151 |
|
@@ -153,117 +317,93 @@ with gr.Blocks(theme=gr.themes.Ocean(), css=css) as demo:
|
|
153 |
|
154 |
m1 = gr.Markdown()
|
155 |
demo.load(hello, inputs=None, outputs=m1)
|
156 |
-
|
157 |
-
|
158 |
-
# radio = gr.Radio(["show", "hide"], label="Show Instructions")
|
159 |
-
instructions = gr.Markdown(
|
160 |
-
"""
|
161 |
-
## Instructions
|
162 |
-
|
163 |
-
1. Login to your HuggingFace account
|
164 |
-
2. Enter the name of the Hugging Face LLM model you want to quantize (Make sure you have access to it)
|
165 |
-
3. Choose the quantization type.
|
166 |
-
4. Optionally, specify the group size.
|
167 |
-
5. Optionally, choose a custom name for the quantized model
|
168 |
-
6. Click "Quantize and Save Model" to start the process.
|
169 |
-
7. Once complete, you'll receive a link to the quantized model on Hugging Face.
|
170 |
-
|
171 |
-
Note: This process may take some time depending on the model size and your hardware you can check the container logs to see where are you at in the process!
|
172 |
-
""",
|
173 |
-
visible=False
|
174 |
-
)
|
175 |
-
|
176 |
-
instructions_visible = gr.State(False)
|
177 |
-
toggle_button = gr.Button("▼ Show Instructions", elem_id="toggle-button", elem_classes="toggle-button")
|
178 |
-
|
179 |
-
def toggle_instructions(instructions_visible):
|
180 |
-
new_visibility = not instructions_visible # Toggle the state
|
181 |
-
new_label = "▲ Hide Instructions" if new_visibility else "▼ Show Instructions" # Change label based on visibility
|
182 |
-
return gr.update(visible=new_visibility), new_visibility, gr.update(value=new_label) # Toggle visibility and return new state
|
183 |
|
184 |
-
|
185 |
-
|
186 |
-
# def update_visibility(radio): # Accept the event argument, even if not used
|
187 |
-
# value = radio # Get the selected value from the radio button
|
188 |
-
# if value == "show":
|
189 |
-
# return gr.Textbox(visible=True) #make it visible
|
190 |
-
# else:
|
191 |
-
# return gr.Textbox(visible=False)
|
192 |
-
# radio.change(update_visibility, radio, instructions)
|
193 |
|
194 |
with gr.Row():
|
195 |
with gr.Column():
|
196 |
with gr.Row():
|
197 |
model_name = HuggingfaceHubSearch(
|
198 |
-
label="Hub Model ID",
|
199 |
placeholder="Search for model id on Huggingface",
|
200 |
search_type="model",
|
201 |
)
|
202 |
with gr.Row():
|
203 |
-
with gr.Column():
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
filterable=False,
|
209 |
-
show_label=False,
|
210 |
-
)
|
211 |
-
threshold_8 = gr.Textbox(
|
212 |
-
info="Outlier threshold",
|
213 |
-
value=6,
|
214 |
-
interactive=True,
|
215 |
-
show_label=False,
|
216 |
-
visible=True
|
217 |
)
|
218 |
quant_type_4 = gr.Dropdown(
|
219 |
info="The quantization data type in the bnb.nn.Linear4Bit layers",
|
220 |
choices=["fp4", "nf4"],
|
221 |
value="fp4",
|
222 |
-
visible=
|
223 |
show_label=False
|
224 |
)
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
quantization_type.change(fn=update_visibility, inputs=quantization_type, outputs=[threshold_8, quant_type_4, radio_4])
|
231 |
-
|
232 |
-
quantized_model_name = gr.Textbox(
|
233 |
-
info="Model Name (optional : to override default)",
|
234 |
-
value="",
|
235 |
-
interactive=True,
|
236 |
show_label=False
|
237 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
238 |
with gr.Column():
|
239 |
-
quantize_button = gr.Button("Quantize and Save Model", variant="primary")
|
240 |
-
output_link = gr.Markdown(label="Quantized Model Link", container=True, min_height=80)
|
241 |
-
|
242 |
-
|
243 |
-
# Adding CSS styles for the username box
|
244 |
-
demo.css = """
|
245 |
-
#username-box {
|
246 |
-
background-color: #f0f8ff; /* Light color */
|
247 |
-
border-radius: 8px;
|
248 |
-
padding: 10px;
|
249 |
-
}
|
250 |
-
"""
|
251 |
-
demo.css = """
|
252 |
-
.center-button {
|
253 |
-
display: flex;
|
254 |
-
justify-content: center;
|
255 |
-
align-items: center;
|
256 |
-
margin: 0 auto; /* Center horizontally */
|
257 |
-
}
|
258 |
-
"""
|
259 |
|
260 |
quantize_button.click(
|
261 |
fn=quantize_and_save,
|
262 |
-
inputs=[model_name,
|
263 |
outputs=[output_link]
|
264 |
)
|
265 |
|
266 |
if __name__ == "__main__":
|
267 |
demo.launch(share=True)
|
268 |
# Launch the app
|
269 |
-
# demo.launch(share=True, debug=True)
|
|
|
5 |
from huggingface_hub import HfApi
|
6 |
from huggingface_hub import list_models
|
7 |
from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
8 |
+
from bitsandbytes.nn import Linear4bit
|
9 |
from packaging import version
|
10 |
import os
|
11 |
|
|
|
14 |
# ^ expect a gr.OAuthProfile object as input to get the user's profile
|
15 |
# if the user is not logged in, profile will be None
|
16 |
if profile is None:
|
17 |
+
return "Hello Please Login to HuggingFace to use the BitsAndBytes Quantizer!"
|
18 |
+
return f"Hello {profile.name} ! Welcome to BitsAndBytes Quantizer"
|
19 |
|
20 |
+
def check_model_exists(oauth_token: gr.OAuthToken | None, username, model_name, quantized_model_name):
|
21 |
"""Check if a model exists in the user's Hugging Face repository."""
|
22 |
try:
|
23 |
models = list_models(author=username, token=oauth_token.token)
|
|
|
25 |
if quantized_model_name :
|
26 |
repo_name = f"{username}/{quantized_model_name}"
|
27 |
else :
|
28 |
+
repo_name = f"{username}/{model_name.split('/')[-1]}-BNB-INT4"
|
29 |
|
30 |
if repo_name in model_names:
|
31 |
return f"Model '{repo_name}' already exists in your repository."
|
|
|
34 |
except Exception as e:
|
35 |
return f"Error checking model existence: {str(e)}"
|
36 |
|
37 |
+
def create_model_card(model_name, quant_type_4, double_quant_4, compute_type_4, quant_storage_4):
|
38 |
model_card = f"""---
|
39 |
base_model:
|
40 |
- {model_name}
|
|
|
43 |
# {model_name} (Quantized)
|
44 |
|
45 |
## Description
|
46 |
+
This model is a quantized version of the original model `{model_name}`. It has been quantized using int4 quantization with bitsandbytes.
|
47 |
|
48 |
## Quantization Details
|
49 |
+
- **Quantization Type**: int4
|
50 |
+
- **bnb_4bit_quant_type**: {quant_type_4}
|
51 |
+
- **bnb_4bit_use_double_quant**: {double_quant_4}
|
52 |
+
- **bnb_4bit_compute_dtype**: {compute_type_4}
|
53 |
+
- **bnb_4bit_quant_storage**: {quant_storage_4}
|
54 |
|
55 |
## Usage
|
56 |
You can use this model in your applications by loading it directly from the Hugging Face Hub:
|
|
|
57 |
```python
|
58 |
from transformers import AutoModel
|
59 |
|
|
|
64 |
def load_model(model_name, quantization_config, auth_token) :
|
65 |
return AutoModel.from_pretrained(model_name, quantization_config=quantization_config, device_map="cpu", use_auth_token=auth_token.token)
|
66 |
|
67 |
+
DTYPE_MAPPING = {
|
68 |
+
"int8": torch.int8,
|
69 |
+
"uint8": torch.uint8,
|
70 |
+
"float16": torch.float16,
|
71 |
+
"float32": torch.float32,
|
72 |
+
"bfloat16": torch.bfloat16,
|
73 |
+
}
|
74 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
+
def quantize_model(model_name, quant_type_4, double_quant_4, compute_type_4, quant_storage_4, auth_token=None):
|
77 |
+
print(f"Quantizing model: {quant_type_4}")
|
78 |
+
quantization_config = BitsAndBytesConfig(
|
79 |
+
load_in_4bit=True,
|
80 |
+
bnb_4bit_quant_type=quant_type_4,
|
81 |
+
bnb_4bit_use_double_quant=True if double_quant_4 == "True" else False,
|
82 |
+
bnb_4bit_quant_storage=DTYPE_MAPPING[quant_storage_4],
|
83 |
+
bnb_4bit_compute_dtype=DTYPE_MAPPING[compute_type_4],
|
84 |
+
)
|
85 |
+
|
86 |
+
model = AutoModel.from_pretrained(model_name, quantization_config=quantization_config, device_map="cpu", use_auth_token=auth_token.token)
|
87 |
+
for _ , module in model.named_modules():
|
88 |
+
if isinstance(module, Linear4bit):
|
89 |
+
module.to("cuda")
|
90 |
+
module.to("cpu")
|
91 |
return model
|
92 |
|
93 |
+
def save_model(model, model_name, quant_type_4, double_quant_4, compute_type_4, quant_storage_4, username=None, auth_token=None, quantized_model_name=None, public=False):
|
94 |
print("Saving quantized model")
|
95 |
with tempfile.TemporaryDirectory() as tmpdirname:
|
96 |
|
|
|
99 |
if quantized_model_name :
|
100 |
repo_name = f"{username}/{quantized_model_name}"
|
101 |
else :
|
102 |
+
repo_name = f"{username}/{model_name.split('/')[-1]}-BNB-INT4"
|
103 |
|
104 |
|
105 |
+
model_card = create_model_card(repo_name, quant_type_4, double_quant_4, compute_type_4, quant_storage_4)
|
106 |
with open(os.path.join(tmpdirname, "README.md"), "w") as f:
|
107 |
f.write(model_card)
|
108 |
# Push to Hub
|
109 |
api = HfApi(token=auth_token.token)
|
110 |
+
api.create_repo(repo_name, exist_ok=True, private=not public)
|
111 |
api.upload_folder(
|
112 |
folder_path=tmpdirname,
|
113 |
repo_id=repo_name,
|
|
|
115 |
)
|
116 |
return f'<h1> 🤗 DONE</h1><br/>Find your repo here: <a href="https://huggingface.co/{repo_name}" target="_blank" style="text-decoration:underline">{repo_name}</a>'
|
117 |
|
118 |
+
def quantize_and_save(profile: gr.OAuthProfile | None, oauth_token: gr.OAuthToken | None, model_name, quant_type_4, double_quant_4, compute_type_4, quant_storage_4, quantized_model_name, public):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
if oauth_token is None :
|
120 |
return "Error : Please Sign In to your HuggingFace account to use the quantizer"
|
121 |
if not profile:
|
122 |
return "Error: Please Sign In to your HuggingFace account to use the quantizer"
|
123 |
+
exists_message = check_model_exists(oauth_token, profile.username, model_name, quantized_model_name)
|
124 |
if exists_message :
|
125 |
return exists_message
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
# try:
|
127 |
+
quantized_model = quantize_model(model_name, quant_type_4, double_quant_4, compute_type_4, quant_storage_4, oauth_token)
|
128 |
+
return save_model(quantized_model, model_name, quant_type_4, double_quant_4, compute_type_4, quant_storage_4, profile.username, oauth_token, quantized_model_name, public)
|
129 |
# except Exception as e :
|
130 |
# print(e)
|
131 |
# return f"An error occurred: {str(e)}"
|
|
|
133 |
|
134 |
css="""/* Custom CSS to allow scrolling */
|
135 |
.gradio-container {overflow-y: auto;}
|
136 |
+
|
137 |
+
/* Fix alignment for radio buttons and checkboxes */
|
138 |
+
.gradio-radio {
|
139 |
+
display: flex !important;
|
140 |
+
align-items: center !important;
|
141 |
+
margin: 10px 0 !important;
|
142 |
+
}
|
143 |
+
|
144 |
+
.gradio-checkbox {
|
145 |
+
display: flex !important;
|
146 |
+
align-items: center !important;
|
147 |
+
margin: 10px 0 !important;
|
148 |
+
}
|
149 |
+
|
150 |
+
/* Ensure consistent spacing and alignment */
|
151 |
+
.gradio-dropdown, .gradio-textbox, .gradio-radio, .gradio-checkbox {
|
152 |
+
margin-bottom: 12px !important;
|
153 |
+
width: 100% !important;
|
154 |
+
}
|
155 |
+
|
156 |
+
/* Align radio buttons and checkboxes horizontally */
|
157 |
+
.option-row {
|
158 |
+
display: flex !important;
|
159 |
+
justify-content: space-between !important;
|
160 |
+
align-items: center !important;
|
161 |
+
gap: 20px !important;
|
162 |
+
margin-bottom: 12px !important;
|
163 |
+
}
|
164 |
+
|
165 |
+
.option-row .gradio-radio, .option-row .gradio-checkbox {
|
166 |
+
margin: 0 !important;
|
167 |
+
flex: 1 !important;
|
168 |
+
}
|
169 |
+
|
170 |
+
/* Horizontally align radio button options with text */
|
171 |
+
.gradio-radio label {
|
172 |
+
display: flex !important;
|
173 |
+
align-items: center !important;
|
174 |
+
}
|
175 |
+
|
176 |
+
.gradio-radio input[type="radio"] {
|
177 |
+
margin-right: 5px !important;
|
178 |
+
}
|
179 |
+
|
180 |
+
/* Remove padding and margin from model name textbox for better alignment */
|
181 |
+
.model-name-textbox {
|
182 |
+
padding-left: 0 !important;
|
183 |
+
padding-right: 0 !important;
|
184 |
+
margin-left: 0 !important;
|
185 |
+
margin-right: 0 !important;
|
186 |
+
}
|
187 |
+
|
188 |
+
/* Quantize button styling with glow effect */
|
189 |
+
button[variant="primary"] {
|
190 |
+
background: linear-gradient(135deg, #3B82F6, #10B981) !important;
|
191 |
+
color: white !important;
|
192 |
+
padding: 16px 32px !important;
|
193 |
+
font-size: 1.1rem !important;
|
194 |
+
font-weight: 700 !important;
|
195 |
+
border: none !important;
|
196 |
+
border-radius: 12px !important;
|
197 |
+
box-shadow: 0 0 15px rgba(59, 130, 246, 0.5) !important;
|
198 |
+
transition: all 0.3s cubic-bezier(0.25, 0.8, 0.25, 1) !important;
|
199 |
+
position: relative;
|
200 |
+
overflow: hidden;
|
201 |
+
animation: glow 1.5s ease-in-out infinite alternate;
|
202 |
+
}
|
203 |
+
|
204 |
+
button[variant="primary"]::before {
|
205 |
+
content: "✨ ";
|
206 |
+
}
|
207 |
+
|
208 |
+
button[variant="primary"]:hover {
|
209 |
+
transform: translateY(-5px) scale(1.05) !important;
|
210 |
+
box-shadow: 0 10px 25px rgba(59, 130, 246, 0.7) !important;
|
211 |
+
}
|
212 |
+
|
213 |
+
@keyframes glow {
|
214 |
+
from {
|
215 |
+
box-shadow: 0 0 10px rgba(59, 130, 246, 0.5);
|
216 |
+
}
|
217 |
+
to {
|
218 |
+
box-shadow: 0 0 20px rgba(59, 130, 246, 0.8), 0 0 30px rgba(16, 185, 129, 0.5);
|
219 |
+
}
|
220 |
+
}
|
221 |
+
|
222 |
+
/* Login button styling with glow effect */
|
223 |
+
#login-button {
|
224 |
+
background: linear-gradient(135deg, #3B82F6, #10B981) !important;
|
225 |
+
color: white !important;
|
226 |
+
font-weight: 700 !important;
|
227 |
+
border: none !important;
|
228 |
+
border-radius: 12px !important;
|
229 |
+
box-shadow: 0 0 15px rgba(59, 130, 246, 0.5) !important;
|
230 |
+
transition: all 0.3s cubic-bezier(0.25, 0.8, 0.25, 1) !important;
|
231 |
+
position: relative;
|
232 |
+
overflow: hidden;
|
233 |
+
animation: glow 1.5s ease-in-out infinite alternate;
|
234 |
+
max-width: 300px !important;
|
235 |
+
margin: 0 auto !important;
|
236 |
+
}
|
237 |
+
|
238 |
+
#login-button::before {
|
239 |
+
content: "🔑 ";
|
240 |
+
display: inline-block !important;
|
241 |
+
vertical-align: middle !important;
|
242 |
+
margin-right: 5px !important;
|
243 |
+
line-height: normal !important;
|
244 |
+
}
|
245 |
+
|
246 |
+
#login-button:hover {
|
247 |
+
transform: translateY(-3px) scale(1.03) !important;
|
248 |
+
box-shadow: 0 10px 25px rgba(59, 130, 246, 0.7) !important;
|
249 |
+
}
|
250 |
+
|
251 |
+
#login-button::after {
|
252 |
+
content: "";
|
253 |
+
position: absolute;
|
254 |
+
top: 0;
|
255 |
+
left: -100%;
|
256 |
+
width: 100%;
|
257 |
+
height: 100%;
|
258 |
+
background: linear-gradient(90deg, transparent, rgba(255, 255, 255, 0.2), transparent);
|
259 |
+
transition: 0.5s;
|
260 |
+
}
|
261 |
+
|
262 |
+
#login-button:hover::after {
|
263 |
+
left: 100%;
|
264 |
+
}
|
265 |
+
|
266 |
+
/* Toggle instructions button styling */
|
267 |
+
#toggle-button {
|
268 |
+
background: linear-gradient(135deg, #3B82F6, #10B981) !important;
|
269 |
+
color: white !important;
|
270 |
+
font-size: 0.85rem !important;
|
271 |
+
font-weight: 600 !important;
|
272 |
+
padding: 8px 16px !important;
|
273 |
+
border: none !important;
|
274 |
+
border-radius: 8px !important;
|
275 |
+
box-shadow: 0 2px 10px rgba(59, 130, 246, 0.3) !important;
|
276 |
+
transition: all 0.3s ease !important;
|
277 |
+
margin: 0.5rem auto 1.5rem auto !important;
|
278 |
+
display: block !important;
|
279 |
+
max-width: 200px !important;
|
280 |
+
text-align: center !important;
|
281 |
+
position: relative;
|
282 |
+
overflow: hidden;
|
283 |
+
}
|
284 |
+
|
285 |
+
#toggle-button:hover {
|
286 |
+
transform: translateY(-2px) !important;
|
287 |
+
box-shadow: 0 4px 12px rgba(59, 130, 246, 0.5) !important;
|
288 |
+
}
|
289 |
+
|
290 |
+
#toggle-button::after {
|
291 |
+
content: "";
|
292 |
+
position: absolute;
|
293 |
+
top: 0;
|
294 |
+
left: -100%;
|
295 |
+
width: 100%;
|
296 |
+
height: 100%;
|
297 |
+
background: linear-gradient(90deg, transparent, rgba(255, 255, 255, 0.2), transparent);
|
298 |
+
transition: 0.5s;
|
299 |
+
}
|
300 |
+
|
301 |
+
#toggle-button:hover::after {
|
302 |
+
left: 100%;
|
303 |
}
|
304 |
+
|
305 |
"""
|
306 |
+
|
307 |
+
|
308 |
with gr.Blocks(theme=gr.themes.Ocean(), css=css) as demo:
|
309 |
gr.Markdown(
|
310 |
"""
|
311 |
+
# 🤗 LLM Model BitsAndBytes Quantizer ✨
|
312 |
|
|
|
313 |
"""
|
314 |
)
|
315 |
|
|
|
317 |
|
318 |
m1 = gr.Markdown()
|
319 |
demo.load(hello, inputs=None, outputs=m1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
320 |
|
321 |
+
instructions_visible = gr.State(False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
322 |
|
323 |
with gr.Row():
|
324 |
with gr.Column():
|
325 |
with gr.Row():
|
326 |
model_name = HuggingfaceHubSearch(
|
327 |
+
label="🔍 Hub Model ID",
|
328 |
placeholder="Search for model id on Huggingface",
|
329 |
search_type="model",
|
330 |
)
|
331 |
with gr.Row():
|
332 |
+
with gr.Column():
|
333 |
+
gr.Markdown(
|
334 |
+
"""
|
335 |
+
### ⚙️ Model Quantization Type Settings
|
336 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
337 |
)
|
338 |
quant_type_4 = gr.Dropdown(
|
339 |
info="The quantization data type in the bnb.nn.Linear4Bit layers",
|
340 |
choices=["fp4", "nf4"],
|
341 |
value="fp4",
|
342 |
+
visible=True,
|
343 |
show_label=False
|
344 |
)
|
345 |
+
compute_type_4 = gr.Dropdown(
|
346 |
+
info="The compute type for the model",
|
347 |
+
choices=["float16", "bfloat16", "float32"],
|
348 |
+
value="float32",
|
349 |
+
visible=True,
|
|
|
|
|
|
|
|
|
|
|
|
|
350 |
show_label=False
|
351 |
)
|
352 |
+
quant_storage_4 = gr.Dropdown(
|
353 |
+
info="The storage type for the model",
|
354 |
+
choices=["float16", "float32", "int8", "uint8", "bfloat16"],
|
355 |
+
value="uint8",
|
356 |
+
visible=True,
|
357 |
+
show_label=False
|
358 |
+
)
|
359 |
+
gr.Markdown(
|
360 |
+
"""
|
361 |
+
### 🔄 Double Quantization Settings
|
362 |
+
"""
|
363 |
+
)
|
364 |
+
with gr.Row(elem_classes="option-row"):
|
365 |
+
double_quant_4 = gr.Radio(
|
366 |
+
["False", "True"],
|
367 |
+
info="Use Double Quant",
|
368 |
+
visible=True,
|
369 |
+
value="False",
|
370 |
+
show_label=False
|
371 |
+
)
|
372 |
+
gr.Markdown(
|
373 |
+
"""
|
374 |
+
### 💾 Saving Settings
|
375 |
+
"""
|
376 |
+
)
|
377 |
+
with gr.Row():
|
378 |
+
quantized_model_name = gr.Textbox(
|
379 |
+
label="✏️ Model Name",
|
380 |
+
info="Model Name (optional : to override default)",
|
381 |
+
value="",
|
382 |
+
interactive=True,
|
383 |
+
elem_classes="model-name-textbox",
|
384 |
+
show_label=False,
|
385 |
+
)
|
386 |
+
|
387 |
+
with gr.Row():
|
388 |
+
public = gr.Checkbox(
|
389 |
+
label="🌐 Make model public",
|
390 |
+
info="If checked, the model will be publicly accessible",
|
391 |
+
value=False,
|
392 |
+
interactive=True,
|
393 |
+
show_label=True
|
394 |
+
)
|
395 |
+
|
396 |
with gr.Column():
|
397 |
+
quantize_button = gr.Button("🚀 Quantize and Save Model", variant="primary")
|
398 |
+
output_link = gr.Markdown(label="🔗 Quantized Model Link", container=True, min_height=80)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
399 |
|
400 |
quantize_button.click(
|
401 |
fn=quantize_and_save,
|
402 |
+
inputs=[model_name, quant_type_4, double_quant_4, compute_type_4, quant_storage_4, quantized_model_name, public],
|
403 |
outputs=[output_link]
|
404 |
)
|
405 |
|
406 |
if __name__ == "__main__":
|
407 |
demo.launch(share=True)
|
408 |
# Launch the app
|
409 |
+
# demo.launch(share=True, debug=True)
|
app_claude.py
ADDED
@@ -0,0 +1,678 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel, BitsAndBytesConfig
|
4 |
+
import tempfile
|
5 |
+
from huggingface_hub import HfApi
|
6 |
+
from huggingface_hub import list_models
|
7 |
+
from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
8 |
+
from bitsandbytes.nn import Linear4bit
|
9 |
+
from packaging import version
|
10 |
+
import os
|
11 |
+
|
12 |
+
|
13 |
+
def hello(profile: gr.OAuthProfile | None, oauth_token: gr.OAuthToken | None) -> str:
|
14 |
+
if profile is None:
|
15 |
+
return "👋 Hello! Sign in to get started with the BitsAndBytes Quantizer."
|
16 |
+
return f"👋 Hello {profile.name}! Welcome to the BitsAndBytes Quantizer."
|
17 |
+
|
18 |
+
def check_model_exists(oauth_token: gr.OAuthToken | None, username, model_name, quantized_model_name):
|
19 |
+
"""Check if a model exists in the user's Hugging Face repository."""
|
20 |
+
try:
|
21 |
+
models = list_models(author=username, token=oauth_token.token)
|
22 |
+
model_names = [model.id for model in models]
|
23 |
+
if quantized_model_name :
|
24 |
+
repo_name = f"{username}/{quantized_model_name}"
|
25 |
+
else :
|
26 |
+
repo_name = f"{username}/{model_name.split('/')[-1]}-BNB-INT4"
|
27 |
+
|
28 |
+
if repo_name in model_names:
|
29 |
+
return f"Model '{repo_name}' already exists in your repository."
|
30 |
+
else:
|
31 |
+
return None # Model does not exist
|
32 |
+
except Exception as e:
|
33 |
+
return f"Error checking model existence: {str(e)}"
|
34 |
+
|
35 |
+
def create_model_card(model_name, quant_type_4, double_quant_4, compute_type_4, quant_storage_4):
|
36 |
+
model_card = f"""---
|
37 |
+
base_model:
|
38 |
+
- {model_name}
|
39 |
+
---
|
40 |
+
|
41 |
+
# {model_name} (Quantized)
|
42 |
+
|
43 |
+
## Description
|
44 |
+
This model is a quantized version of the original model `{model_name}`. It has been quantized using int4 quantization with bitsandbytes.
|
45 |
+
|
46 |
+
## Quantization Details
|
47 |
+
- **Quantization Type**: int4
|
48 |
+
- **bnb_4bit_quant_type**: {quant_type_4}
|
49 |
+
- **bnb_4bit_use_double_quant**: {double_quant_4}
|
50 |
+
- **bnb_4bit_compute_dtype**: {compute_type_4}
|
51 |
+
- **bnb_4bit_quant_storage**: {quant_storage_4}
|
52 |
+
|
53 |
+
## Usage
|
54 |
+
You can use this model in your applications by loading it directly from the Hugging Face Hub:
|
55 |
+
```python
|
56 |
+
from transformers import AutoModel
|
57 |
+
|
58 |
+
model = AutoModel.from_pretrained("{model_name}")"""
|
59 |
+
|
60 |
+
return model_card
|
61 |
+
|
62 |
+
def load_model(model_name, quantization_config, auth_token) :
|
63 |
+
return AutoModel.from_pretrained(model_name, quantization_config=quantization_config, device_map="cpu", use_auth_token=auth_token.token)
|
64 |
+
|
65 |
+
DTYPE_MAPPING = {
|
66 |
+
"int8": torch.int8,
|
67 |
+
"uint8": torch.uint8,
|
68 |
+
"float16": torch.float16,
|
69 |
+
"float32": torch.float32,
|
70 |
+
"bfloat16": torch.bfloat16,
|
71 |
+
}
|
72 |
+
|
73 |
+
|
74 |
+
def quantize_model(model_name, quant_type_4, double_quant_4, compute_type_4, quant_storage_4, auth_token=None):
|
75 |
+
print(f"Quantizing model: {quant_type_4}")
|
76 |
+
quantization_config = BitsAndBytesConfig(
|
77 |
+
load_in_4bit=True,
|
78 |
+
bnb_4bit_quant_type=quant_type_4,
|
79 |
+
bnb_4bit_use_double_quant=True if double_quant_4 == "True" else False,
|
80 |
+
bnb_4bit_quant_storage=DTYPE_MAPPING[quant_storage_4],
|
81 |
+
bnb_4bit_compute_dtype=DTYPE_MAPPING[compute_type_4],
|
82 |
+
)
|
83 |
+
|
84 |
+
model = AutoModel.from_pretrained(model_name, quantization_config=quantization_config, device_map="cpu", use_auth_token=auth_token.token)
|
85 |
+
for _ , module in model.named_modules():
|
86 |
+
if isinstance(module, Linear4bit):
|
87 |
+
module.to("cuda")
|
88 |
+
module.to("cpu")
|
89 |
+
return model
|
90 |
+
|
91 |
+
def save_model(model, model_name, quant_type_4, double_quant_4, compute_type_4, quant_storage_4, username=None, auth_token=None, quantized_model_name=None, public=False):
|
92 |
+
print("Saving quantized model")
|
93 |
+
with tempfile.TemporaryDirectory() as tmpdirname:
|
94 |
+
model.save_pretrained(tmpdirname, safe_serialization=True, use_auth_token=auth_token.token)
|
95 |
+
if quantized_model_name :
|
96 |
+
repo_name = f"{username}/{quantized_model_name}"
|
97 |
+
else :
|
98 |
+
repo_name = f"{username}/{model_name.split('/')[-1]}-BNB-INT4"
|
99 |
+
|
100 |
+
model_card = create_model_card(repo_name, quant_type_4, double_quant_4, compute_type_4, quant_storage_4)
|
101 |
+
with open(os.path.join(tmpdirname, "README.md"), "w") as f:
|
102 |
+
f.write(model_card)
|
103 |
+
# Push to Hub
|
104 |
+
api = HfApi(token=auth_token.token)
|
105 |
+
api.create_repo(repo_name, exist_ok=True, private=not public)
|
106 |
+
api.upload_folder(
|
107 |
+
folder_path=tmpdirname,
|
108 |
+
repo_id=repo_name,
|
109 |
+
repo_type="model",
|
110 |
+
)
|
111 |
+
return f"""
|
112 |
+
<div class="success-box">
|
113 |
+
<h2>🎉 Quantization Complete!</h2>
|
114 |
+
<p>Your quantized model is now available at:</p>
|
115 |
+
<a href="https://huggingface.co/{repo_name}" target="_blank" class="model-link">
|
116 |
+
huggingface.co/{repo_name}
|
117 |
+
</a>
|
118 |
+
</div>
|
119 |
+
"""
|
120 |
+
|
121 |
+
def quantize_and_save(profile: gr.OAuthProfile | None, oauth_token: gr.OAuthToken | None, model_name, quant_type_4, double_quant_4, compute_type_4, quant_storage_4, quantized_model_name, public):
|
122 |
+
if oauth_token is None :
|
123 |
+
return """
|
124 |
+
<div class="error-box">
|
125 |
+
<h3>❌ Authentication Error</h3>
|
126 |
+
<p>Please sign in to your HuggingFace account to use the quantizer.</p>
|
127 |
+
</div>
|
128 |
+
"""
|
129 |
+
if not profile:
|
130 |
+
return """
|
131 |
+
<div class="error-box">
|
132 |
+
<h3>❌ Authentication Error</h3>
|
133 |
+
<p>Please sign in to your HuggingFace account to use the quantizer.</p>
|
134 |
+
</div>
|
135 |
+
"""
|
136 |
+
exists_message = check_model_exists(oauth_token, profile.username, model_name, quantized_model_name)
|
137 |
+
if exists_message :
|
138 |
+
return f"""
|
139 |
+
<div class="warning-box">
|
140 |
+
<h3>⚠️ Model Already Exists</h3>
|
141 |
+
<p>{exists_message}</p>
|
142 |
+
</div>
|
143 |
+
"""
|
144 |
+
try:
|
145 |
+
quantized_model = quantize_model(model_name, quant_type_4, double_quant_4, compute_type_4, quant_storage_4, oauth_token)
|
146 |
+
return save_model(quantized_model, model_name, quant_type_4, double_quant_4, compute_type_4, quant_storage_4, profile.username, oauth_token, quantized_model_name, public)
|
147 |
+
except Exception as e :
|
148 |
+
print(e)
|
149 |
+
return f"""
|
150 |
+
<div class="error-box">
|
151 |
+
<h3>❌ Error Occurred</h3>
|
152 |
+
<p>{str(e)}</p>
|
153 |
+
</div>
|
154 |
+
"""
|
155 |
+
|
156 |
+
css = """
|
157 |
+
:root {
|
158 |
+
--primary: #6366f1;
|
159 |
+
--primary-light: #818cf8;
|
160 |
+
--primary-dark: #4f46e5;
|
161 |
+
--secondary: #10b981;
|
162 |
+
--accent: #f97316;
|
163 |
+
--background: #f8fafc;
|
164 |
+
--text: #1e293b;
|
165 |
+
--card-bg: #ffffff;
|
166 |
+
--input-bg: #f1f5f9;
|
167 |
+
--error: #ef4444;
|
168 |
+
--warning: #f59e0b;
|
169 |
+
--success: #10b981;
|
170 |
+
--border-radius: 12px;
|
171 |
+
--shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1), 0 2px 4px -1px rgba(0, 0, 0, 0.06);
|
172 |
+
--transition: all 0.3s ease;
|
173 |
+
}
|
174 |
+
|
175 |
+
body, .gradio-container {
|
176 |
+
font-family: 'Inter', -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, Oxygen, Ubuntu, Cantarell, 'Open Sans', sans-serif;
|
177 |
+
color: var(--text);
|
178 |
+
background-color: var(--background);
|
179 |
+
}
|
180 |
+
|
181 |
+
h1 {
|
182 |
+
font-size: 2.5rem !important;
|
183 |
+
font-weight: 800 !important;
|
184 |
+
text-align: center;
|
185 |
+
background: linear-gradient(45deg, var(--primary), var(--accent));
|
186 |
+
-webkit-background-clip: text;
|
187 |
+
background-clip: text;
|
188 |
+
color: transparent !important;
|
189 |
+
margin-bottom: 1rem !important;
|
190 |
+
padding: 1rem 0 !important;
|
191 |
+
}
|
192 |
+
|
193 |
+
h2 {
|
194 |
+
font-size: 1.75rem !important;
|
195 |
+
font-weight: 700 !important;
|
196 |
+
color: var(--primary-dark) !important;
|
197 |
+
margin-top: 1.5rem !important;
|
198 |
+
margin-bottom: 1rem !important;
|
199 |
+
}
|
200 |
+
|
201 |
+
h3 {
|
202 |
+
font-size: 1.25rem !important;
|
203 |
+
font-weight: 600 !important;
|
204 |
+
color: var(--primary) !important;
|
205 |
+
margin-top: 1rem !important;
|
206 |
+
margin-bottom: 0.5rem !important;
|
207 |
+
border-bottom: 2px solid var(--primary-light);
|
208 |
+
padding-bottom: 0.5rem;
|
209 |
+
width: fit-content;
|
210 |
+
}
|
211 |
+
|
212 |
+
/* Main container styling */
|
213 |
+
.main-container {
|
214 |
+
max-width: 1200px;
|
215 |
+
margin: 0 auto;
|
216 |
+
padding: 2rem;
|
217 |
+
background-color: var(--card-bg);
|
218 |
+
border-radius: var(--border-radius);
|
219 |
+
box-shadow: var(--shadow);
|
220 |
+
}
|
221 |
+
|
222 |
+
/* Button styling */
|
223 |
+
button {
|
224 |
+
border-radius: var(--border-radius) !important;
|
225 |
+
font-weight: 600 !important;
|
226 |
+
transition: var(--transition) !important;
|
227 |
+
text-transform: uppercase;
|
228 |
+
letter-spacing: 0.5px;
|
229 |
+
}
|
230 |
+
|
231 |
+
button.primary {
|
232 |
+
background: linear-gradient(135deg, var(--primary), var(--primary-dark)) !important;
|
233 |
+
border: none !important;
|
234 |
+
color: white !important;
|
235 |
+
padding: 12px 24px !important;
|
236 |
+
box-shadow: 0 4px 6px -1px rgba(99, 102, 241, 0.4) !important;
|
237 |
+
}
|
238 |
+
|
239 |
+
button.primary:hover {
|
240 |
+
transform: translateY(-2px) !important;
|
241 |
+
box-shadow: 0 8px 15px -3px rgba(99, 102, 241, 0.5) !important;
|
242 |
+
}
|
243 |
+
|
244 |
+
/* Login button styling */
|
245 |
+
#login-button {
|
246 |
+
margin: 1.5rem auto !important;
|
247 |
+
min-width: 200px !important;
|
248 |
+
background: linear-gradient(135deg, var(--primary), var(--primary-dark)) !important;
|
249 |
+
color: white !important;
|
250 |
+
font-weight: 600 !important;
|
251 |
+
padding: 12px 24px !important;
|
252 |
+
border-radius: var(--border-radius) !important;
|
253 |
+
border: none !important;
|
254 |
+
box-shadow: 0 4px 6px -1px rgba(99, 102, 241, 0.4) !important;
|
255 |
+
transition: var(--transition) !important;
|
256 |
+
}
|
257 |
+
|
258 |
+
#login-button:hover {
|
259 |
+
transform: translateY(-2px) !important;
|
260 |
+
box-shadow: 0 8px 15px -3px rgba(99, 102, 241, 0.5) !important;
|
261 |
+
}
|
262 |
+
|
263 |
+
/* Toggle button styling */
|
264 |
+
#toggle-button {
|
265 |
+
background: transparent !important;
|
266 |
+
color: var(--primary) !important;
|
267 |
+
border: 2px solid var(--primary-light) !important;
|
268 |
+
padding: 8px 16px !important;
|
269 |
+
margin: 1rem 0 !important;
|
270 |
+
border-radius: var(--border-radius) !important;
|
271 |
+
transition: var(--transition) !important;
|
272 |
+
font-weight: 600 !important;
|
273 |
+
}
|
274 |
+
|
275 |
+
#toggle-button:hover {
|
276 |
+
background-color: var(--primary-light) !important;
|
277 |
+
color: white !important;
|
278 |
+
}
|
279 |
+
|
280 |
+
/* Input fields styling */
|
281 |
+
input, select, textarea {
|
282 |
+
border-radius: var(--border-radius) !important;
|
283 |
+
border: 2px solid var(--input-bg) !important;
|
284 |
+
padding: 10px 16px !important;
|
285 |
+
background-color: var(--input-bg) !important;
|
286 |
+
transition: var(--transition) !important;
|
287 |
+
}
|
288 |
+
|
289 |
+
input:focus, select:focus, textarea:focus {
|
290 |
+
border-color: var(--primary-light) !important;
|
291 |
+
box-shadow: 0 0 0 2px rgba(99, 102, 241, 0.2) !important;
|
292 |
+
}
|
293 |
+
|
294 |
+
/* Dropdown styling with nice hover effects */
|
295 |
+
.gradio-dropdown > div {
|
296 |
+
border-radius: var(--border-radius) !important;
|
297 |
+
border: 2px solid var(--input-bg) !important;
|
298 |
+
overflow: hidden !important;
|
299 |
+
transition: var(--transition) !important;
|
300 |
+
}
|
301 |
+
|
302 |
+
.gradio-dropdown > div:hover {
|
303 |
+
border-color: var(--primary-light) !important;
|
304 |
+
}
|
305 |
+
|
306 |
+
/* Radio and checkbox styling */
|
307 |
+
.gradio-radio, .gradio-checkbox {
|
308 |
+
background-color: var(--card-bg) !important;
|
309 |
+
border-radius: var(--border-radius) !important;
|
310 |
+
padding: 12px !important;
|
311 |
+
margin-bottom: 16px !important;
|
312 |
+
transition: var(--transition) !important;
|
313 |
+
border: 2px solid var(--input-bg) !important;
|
314 |
+
}
|
315 |
+
|
316 |
+
.gradio-radio:hover, .gradio-checkbox:hover {
|
317 |
+
border-color: var(--primary-light) !important;
|
318 |
+
}
|
319 |
+
|
320 |
+
.gradio-radio input[type="radio"] + label {
|
321 |
+
padding: 8px 12px !important;
|
322 |
+
border-radius: 20px !important;
|
323 |
+
margin-right: 8px !important;
|
324 |
+
background-color: var(--input-bg) !important;
|
325 |
+
transition: var(--transition) !important;
|
326 |
+
}
|
327 |
+
|
328 |
+
.gradio-radio input[type="radio"]:checked + label {
|
329 |
+
background-color: var(--primary) !important;
|
330 |
+
color: white !important;
|
331 |
+
}
|
332 |
+
|
333 |
+
/* Custom spacing and layout */
|
334 |
+
.gradio-row {
|
335 |
+
margin-bottom: 24px !important;
|
336 |
+
}
|
337 |
+
|
338 |
+
.option-row {
|
339 |
+
display: flex !important;
|
340 |
+
gap: 16px !important;
|
341 |
+
margin-bottom: 16px !important;
|
342 |
+
}
|
343 |
+
|
344 |
+
/* Card-like sections */
|
345 |
+
.card-section {
|
346 |
+
background-color: var(--card-bg) !important;
|
347 |
+
border-radius: var(--border-radius) !important;
|
348 |
+
padding: 20px !important;
|
349 |
+
margin-bottom: 24px !important;
|
350 |
+
box-shadow: var(--shadow) !important;
|
351 |
+
border: 1px solid rgba(0, 0, 0, 0.05) !important;
|
352 |
+
}
|
353 |
+
|
354 |
+
/* Search box styling */
|
355 |
+
.search-box input {
|
356 |
+
border-radius: var(--border-radius) !important;
|
357 |
+
border: 2px solid var(--input-bg) !important;
|
358 |
+
padding: 12px 20px !important;
|
359 |
+
box-shadow: var(--shadow) !important;
|
360 |
+
transition: var(--transition) !important;
|
361 |
+
}
|
362 |
+
|
363 |
+
.search-box input:focus {
|
364 |
+
border-color: var(--primary) !important;
|
365 |
+
box-shadow: 0 0 0 3px rgba(99, 102, 241, 0.3) !important;
|
366 |
+
}
|
367 |
+
|
368 |
+
/* Model name textbox specific styling */
|
369 |
+
.model-name-textbox {
|
370 |
+
border: 2px solid var(--input-bg) !important;
|
371 |
+
border-radius: var(--border-radius) !important;
|
372 |
+
transition: var(--transition) !important;
|
373 |
+
}
|
374 |
+
|
375 |
+
.model-name-textbox:focus-within {
|
376 |
+
border-color: var(--primary) !important;
|
377 |
+
box-shadow: 0 0 0 3px rgba(99, 102, 241, 0.3) !important;
|
378 |
+
}
|
379 |
+
|
380 |
+
/* Success, warning and error boxes */
|
381 |
+
.success-box, .warning-box, .error-box {
|
382 |
+
border-radius: var(--border-radius) !important;
|
383 |
+
padding: 20px !important;
|
384 |
+
margin: 20px 0 !important;
|
385 |
+
box-shadow: var(--shadow) !important;
|
386 |
+
animation: fadeIn 0.5s ease-in-out;
|
387 |
+
}
|
388 |
+
|
389 |
+
.success-box {
|
390 |
+
background-color: rgba(16, 185, 129, 0.1) !important;
|
391 |
+
border: 2px solid var(--success) !important;
|
392 |
+
}
|
393 |
+
|
394 |
+
.warning-box {
|
395 |
+
background-color: rgba(245, 158, 11, 0.1) !important;
|
396 |
+
border: 2px solid var(--warning) !important;
|
397 |
+
}
|
398 |
+
|
399 |
+
.error-box {
|
400 |
+
background-color: rgba(239, 68, 68, 0.1) !important;
|
401 |
+
border: 2px solid var(--error) !important;
|
402 |
+
}
|
403 |
+
|
404 |
+
/* Model link styling */
|
405 |
+
.model-link {
|
406 |
+
display: inline-block !important;
|
407 |
+
background: linear-gradient(135deg, var(--primary), var(--primary-dark)) !important;
|
408 |
+
color: white !important;
|
409 |
+
text-decoration: none !important;
|
410 |
+
padding: 12px 24px !important;
|
411 |
+
border-radius: var(--border-radius) !important;
|
412 |
+
font-weight: 600 !important;
|
413 |
+
margin-top: 16px !important;
|
414 |
+
box-shadow: 0 4px 6px -1px rgba(99, 102, 241, 0.4) !important;
|
415 |
+
transition: var(--transition) !important;
|
416 |
+
}
|
417 |
+
|
418 |
+
.model-link:hover {
|
419 |
+
transform: translateY(-2px) !important;
|
420 |
+
box-shadow: 0 8px 15px -3px rgba(99, 102, 241, 0.5) !important;
|
421 |
+
}
|
422 |
+
|
423 |
+
/* Instructions section */
|
424 |
+
.instructions-container {
|
425 |
+
background-color: rgba(99, 102, 241, 0.05) !important;
|
426 |
+
border-left: 4px solid var(--primary) !important;
|
427 |
+
padding: 16px !important;
|
428 |
+
margin: 24px 0 !important;
|
429 |
+
border-radius: 0 var(--border-radius) var(--border-radius) 0 !important;
|
430 |
+
}
|
431 |
+
|
432 |
+
/* Animations */
|
433 |
+
@keyframes fadeIn {
|
434 |
+
from { opacity: 0; transform: translateY(10px); }
|
435 |
+
to { opacity: 1; transform: translateY(0); }
|
436 |
+
}
|
437 |
+
|
438 |
+
/* Responsive adjustments */
|
439 |
+
@media (max-width: 768px) {
|
440 |
+
.option-row {
|
441 |
+
flex-direction: column !important;
|
442 |
+
}
|
443 |
+
}
|
444 |
+
|
445 |
+
/* Add a nice gradient splash to the app */
|
446 |
+
.gradio-container::before {
|
447 |
+
content: "";
|
448 |
+
position: absolute;
|
449 |
+
top: 0;
|
450 |
+
left: 0;
|
451 |
+
right: 0;
|
452 |
+
height: 10px;
|
453 |
+
background: linear-gradient(90deg, var(--primary), var(--accent));
|
454 |
+
z-index: 100;
|
455 |
+
}
|
456 |
+
|
457 |
+
/* Stylish header */
|
458 |
+
.app-header {
|
459 |
+
display: flex;
|
460 |
+
flex-direction: column;
|
461 |
+
align-items: center;
|
462 |
+
margin-bottom: 2rem;
|
463 |
+
position: relative;
|
464 |
+
}
|
465 |
+
|
466 |
+
.app-header::after {
|
467 |
+
content: "";
|
468 |
+
position: absolute;
|
469 |
+
bottom: -10px;
|
470 |
+
left: 50%;
|
471 |
+
transform: translateX(-50%);
|
472 |
+
width: 80px;
|
473 |
+
height: 4px;
|
474 |
+
background: linear-gradient(90deg, var(--primary), var(--accent));
|
475 |
+
border-radius: 2px;
|
476 |
+
}
|
477 |
+
|
478 |
+
/* Section headers */
|
479 |
+
.section-header {
|
480 |
+
display: flex;
|
481 |
+
align-items: center;
|
482 |
+
margin-bottom: 1rem;
|
483 |
+
}
|
484 |
+
|
485 |
+
.section-header::before {
|
486 |
+
content: "⚙️";
|
487 |
+
margin-right: 8px;
|
488 |
+
font-size: 1.25rem;
|
489 |
+
}
|
490 |
+
|
491 |
+
/* Quantize button special styling */
|
492 |
+
#quantize-button {
|
493 |
+
background: linear-gradient(135deg, var(--primary), var(--accent)) !important;
|
494 |
+
color: white !important;
|
495 |
+
padding: 16px 32px !important;
|
496 |
+
font-size: 1.1rem !important;
|
497 |
+
font-weight: 700 !important;
|
498 |
+
border: none !important;
|
499 |
+
border-radius: var(--border-radius) !important;
|
500 |
+
box-shadow: 0 4px 15px -3px rgba(99, 102, 241, 0.5) !important;
|
501 |
+
transition: all 0.3s cubic-bezier(0.25, 0.8, 0.25, 1) !important;
|
502 |
+
position: relative;
|
503 |
+
overflow: hidden;
|
504 |
+
}
|
505 |
+
|
506 |
+
#quantize-button:hover {
|
507 |
+
transform: translateY(-3px) !important;
|
508 |
+
box-shadow: 0 7px 20px -2px rgba(99, 102, 241, 0.6) !important;
|
509 |
+
}
|
510 |
+
|
511 |
+
#quantize-button::after {
|
512 |
+
content: "";
|
513 |
+
position: absolute;
|
514 |
+
top: 0;
|
515 |
+
left: 0;
|
516 |
+
width: 100%;
|
517 |
+
height: 100%;
|
518 |
+
background: linear-gradient(rgba(255, 255, 255, 0.2), rgba(255, 255, 255, 0));
|
519 |
+
transform: translateY(-100%);
|
520 |
+
transition: transform 0.6s cubic-bezier(0.25, 0.8, 0.25, 1);
|
521 |
+
}
|
522 |
+
|
523 |
+
#quantize-button:hover::after {
|
524 |
+
transform: translateY(0);
|
525 |
+
}
|
526 |
+
"""
|
527 |
+
|
528 |
+
with gr.Blocks(theme=gr.themes.Soft(primary_hue="indigo", secondary_hue="emerald"), css=css) as demo:
|
529 |
+
with gr.Column(elem_classes="main-container"):
|
530 |
+
with gr.Row(elem_classes="app-header"):
|
531 |
+
gr.Markdown(
|
532 |
+
"""
|
533 |
+
<h1 style="text-align: center; margin-bottom: 1rem; font-size: 1.2rem; color: #4b5563;"> 🤗 BitsAndBytes Model Quantizer</h1>
|
534 |
+
|
535 |
+
<div style="text-align: center; margin-bottom: 1rem; font-size: 1.2rem; color: #4b5563;">
|
536 |
+
Welcome to the BitsAndBytes Model Quantizer!
|
537 |
+
</div>
|
538 |
+
"""
|
539 |
+
)
|
540 |
+
|
541 |
+
gr.LoginButton(elem_id="login-button", elem_classes="login-button")
|
542 |
+
|
543 |
+
welcome_msg = gr.Markdown(elem_classes="welcome-message")
|
544 |
+
demo.load(hello, inputs=None, outputs=welcome_msg)
|
545 |
+
|
546 |
+
instructions = gr.Markdown(
|
547 |
+
"""
|
548 |
+
<div class="instructions-container">
|
549 |
+
<h3>📋 Instructions</h3>
|
550 |
+
<ol>
|
551 |
+
<li>Login to your HuggingFace account</li>
|
552 |
+
<li>Enter the name of the Hugging Face LLM model you want to quantize</li>
|
553 |
+
<li>Configure quantization settings based on your needs</li>
|
554 |
+
<li>Optionally, specify a custom name for the quantized model</li>
|
555 |
+
<li>Click "Quantize Model" to start the process</li>
|
556 |
+
</ol>
|
557 |
+
<p><strong>Note:</strong> Processing time depends on model size and your hardware. Check container logs for progress!</p>
|
558 |
+
</div>
|
559 |
+
""",
|
560 |
+
visible=False
|
561 |
+
)
|
562 |
+
|
563 |
+
instructions_visible = gr.State(False)
|
564 |
+
toggle_button = gr.Button("▼ Show Instructions", elem_id="toggle-button", elem_classes="toggle-button")
|
565 |
+
|
566 |
+
def toggle_instructions(instructions_visible):
|
567 |
+
new_visibility = not instructions_visible
|
568 |
+
new_label = "▲ Hide Instructions" if new_visibility else "▼ Show Instructions"
|
569 |
+
return gr.update(visible=new_visibility), new_visibility, gr.update(value=new_label)
|
570 |
+
|
571 |
+
toggle_button.click(toggle_instructions, instructions_visible, [instructions, instructions_visible, toggle_button])
|
572 |
+
|
573 |
+
with gr.Row(elem_classes="app-content"):
|
574 |
+
with gr.Column(scale=1, elem_classes="card-section"):
|
575 |
+
with gr.Row(elem_classes="search-section"):
|
576 |
+
model_name = HuggingfaceHubSearch(
|
577 |
+
label="🔍 Select Model",
|
578 |
+
placeholder=" Search for model on Huggingface Hub...",
|
579 |
+
search_type="model",
|
580 |
+
elem_classes="search-box"
|
581 |
+
)
|
582 |
+
|
583 |
+
with gr.Row(elem_classes="section-header"):
|
584 |
+
gr.Markdown("### Quantization Settings")
|
585 |
+
|
586 |
+
with gr.Column(elem_classes="settings-group"):
|
587 |
+
gr.Markdown("**Quantization Type**", elem_classes="setting-label")
|
588 |
+
quant_type_4 = gr.Dropdown(
|
589 |
+
choices=["fp4", "nf4"],
|
590 |
+
value="fp4",
|
591 |
+
label="Format",
|
592 |
+
info="The quantization data type in bnb.nn.Linear4Bit layers",
|
593 |
+
show_label=False
|
594 |
+
)
|
595 |
+
|
596 |
+
gr.Markdown("**Compute Settings**", elem_classes="setting-label")
|
597 |
+
compute_type_4 = gr.Dropdown(
|
598 |
+
choices=["float16", "bfloat16", "float32"],
|
599 |
+
value="float32",
|
600 |
+
label="Compute Type",
|
601 |
+
info="The compute dtype for matrix multiplication"
|
602 |
+
)
|
603 |
+
|
604 |
+
quant_storage_4 = gr.Dropdown(
|
605 |
+
choices=["float16", "float32", "int8", "uint8", "bfloat16"],
|
606 |
+
value="uint8",
|
607 |
+
label="Storage Type",
|
608 |
+
info="The storage type for quantized weights"
|
609 |
+
)
|
610 |
+
|
611 |
+
gr.Markdown("**Double Quantization**", elem_classes="setting-label")
|
612 |
+
double_quant_4 = gr.Radio(
|
613 |
+
["False", "True"],
|
614 |
+
label="Use Double Quantization",
|
615 |
+
info="Further compress model size with nested quantization",
|
616 |
+
value="False",
|
617 |
+
)
|
618 |
+
|
619 |
+
with gr.Row(elem_classes="section-header"):
|
620 |
+
gr.Markdown("### Output Settings")
|
621 |
+
|
622 |
+
with gr.Column(elem_classes="settings-group"):
|
623 |
+
quantized_model_name = gr.Textbox(
|
624 |
+
label="Custom Model Name (Optional)",
|
625 |
+
info="Leave blank to use default naming convention",
|
626 |
+
placeholder="my-quantized-model",
|
627 |
+
elem_classes="model-name-textbox"
|
628 |
+
)
|
629 |
+
|
630 |
+
public = gr.Checkbox(
|
631 |
+
label="Make model public",
|
632 |
+
info="If checked, your model will be publicly accessible on Hugging Face Hub",
|
633 |
+
value=False,
|
634 |
+
)
|
635 |
+
|
636 |
+
with gr.Column(scale=1, elem_classes="card-section"):
|
637 |
+
with gr.Row():
|
638 |
+
gr.Markdown("""
|
639 |
+
### 📊 Quantization Benefits
|
640 |
+
|
641 |
+
<div style="background-color: rgba(99, 102, 241, 0.05); padding: 12px; border-radius: 8px; margin-bottom: 16px;">
|
642 |
+
<p><strong>⚡ Lower Memory Usage:</strong> Reduce model size by up to 75%</p>
|
643 |
+
<p><strong>🚀 Faster Inference:</strong> Achieve better performance on resource-constrained hardware</p>
|
644 |
+
<p><strong>💻 Wider Compatibility:</strong> Run models on devices with limited VRAM</p>
|
645 |
+
</div>
|
646 |
+
|
647 |
+
### 🔧 Configuration Guide
|
648 |
+
|
649 |
+
<div style="background-color: rgba(16, 185, 129, 0.05); padding: 12px; border-radius: 8px;">
|
650 |
+
<p><strong>Quantization Type:</strong></p>
|
651 |
+
<ul>
|
652 |
+
<li><code>fp4</code> - 4-bit floating point (better for most cases)</li>
|
653 |
+
<li><code>nf4</code> - normalized float format (better for specific models)</li>
|
654 |
+
</ul>
|
655 |
+
<p><strong>Double Quantization:</strong> Enable for additional compression with minimal quality loss</p>
|
656 |
+
</div>
|
657 |
+
""")
|
658 |
+
|
659 |
+
with gr.Row():
|
660 |
+
quantize_button = gr.Button("🚀 Quantize Model", variant="primary", elem_id="quantize-button")
|
661 |
+
|
662 |
+
output_link = gr.HTML(label="Results", elem_classes="results-container")
|
663 |
+
|
664 |
+
# Add interactive footer with links
|
665 |
+
gr.Markdown("""
|
666 |
+
<div style="margin-top: 2rem; text-align: center; padding: 1rem; border-top: 1px solid rgba(99, 102, 241, 0.2);">
|
667 |
+
<p>Powered by <a href="https://huggingface.co/" target="_blank" style="color: var(--primary); text-decoration: none; font-weight: 600;">Hugging Face</a> and <a href="https://github.com/TimDettmers/bitsandbytes" target="_blank" style="color: var(--primary); text-decoration: none; font-weight: 600;">BitsAndBytes</a></p>
|
668 |
+
</div>
|
669 |
+
""")
|
670 |
+
|
671 |
+
quantize_button.click(
|
672 |
+
fn=quantize_and_save,
|
673 |
+
inputs=[model_name, quant_type_4, double_quant_4, compute_type_4, quant_storage_4, quantized_model_name, public],
|
674 |
+
outputs=[output_link]
|
675 |
+
)
|
676 |
+
|
677 |
+
if __name__ == "__main__":
|
678 |
+
demo.launch(share=True)
|
requirements.txt
CHANGED
@@ -2,4 +2,4 @@ transformers
|
|
2 |
accelerate
|
3 |
huggingface-hub
|
4 |
gradio-huggingfacehub-search
|
5 |
-
|
|
|
2 |
accelerate
|
3 |
huggingface-hub
|
4 |
gradio-huggingfacehub-search
|
5 |
+
bitsandbytes
|