Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import InferenceClient | |
import threading | |
import time | |
# Hugging Face Model Client | |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
# Thread-local client handling | |
thread_local = threading.local() | |
def get_client(): | |
if not hasattr(thread_local, "client"): | |
thread_local.client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
return thread_local.client | |
def respond(message, history, system_message, max_tokens, temperature, top_p): | |
try: | |
time.sleep(0.3) # Small UX pause | |
messages = [{"role": "system", "content": system_message}] | |
if history: | |
for user, bot in history: | |
messages.append({"role": "user", "content": user}) | |
messages.append({"role": "assistant", "content": bot}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
client = get_client() | |
for msg in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = msg.choices[0].delta.content | |
if token: | |
response += token | |
yield response | |
except Exception as e: | |
yield f"⚠️ Error: {str(e)}" | |
def create_interface(): | |
with gr.Blocks(css=""" | |
body { | |
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%); | |
font-family: 'Inter', sans-serif; | |
} | |
.gradio-container { | |
max-width: 800px; | |
margin: auto; | |
padding: 30px; | |
border-radius: 16px; | |
background: rgba(255, 255, 255, 0.92); | |
box-shadow: 0 8px 30px rgba(0, 0, 0, 0.1); | |
} | |
h1 { | |
text-align: center; | |
font-size: 2.2em; | |
margin-bottom: 0.6em; | |
} | |
.gr-textbox textarea { | |
font-size: 1em; | |
} | |
""") as demo: | |
gr.Markdown("# 🤖 Zephyr Chat Assistant") | |
system_message = gr.Textbox( | |
value="You are a helpful AI assistant.", | |
label="System Instructions", | |
lines=2 | |
) | |
max_tokens = gr.Slider(1, 2048, value=512, step=1, label="Maximum Tokens") | |
temperature = gr.Slider(0.1, 4.0, value=0.7, step=0.1, label="Temperature") | |
top_p = gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p") | |
chatbot = gr.ChatInterface( | |
respond, | |
additional_inputs=[system_message, max_tokens, temperature, top_p], | |
type="messages" | |
) | |
gr.Examples( | |
examples=[ | |
["Tell me a short story about a robot learning to paint"], | |
["Explain quantum computing like I'm 10 years old"], | |
["What are some healthy breakfast ideas?"] | |
], | |
inputs=[chatbot.textbox] | |
) | |
return demo | |
if __name__ == "__main__": | |
demo = create_interface() | |
demo.launch(share=True) | |