File size: 69,987 Bytes
d5ef4ac e9ef6c3 d7461c1 d5ef4ac e9ef6c3 7c1137f e9ef6c3 d5ef4ac e9ef6c3 baf23e1 d5ef4ac e9ef6c3 3697b44 5e91d58 e9ef6c3 d5ef4ac a0a48f3 338edbb bf748a1 c93b28e bf748a1 2683d4a d5ef4ac ef627ec bf748a1 ef627ec 7a821f4 d5ef4ac 7c1137f d5ef4ac ef627ec d5ef4ac ef627ec d5ef4ac ef627ec 7c1137f ef627ec 7c1137f ef627ec 7c1137f ef627ec 7c1137f ef627ec 7c1137f ef627ec 7c1137f ef627ec 7c1137f ef627ec b5194e5 ef627ec 7c1137f ef627ec 7c1137f 0b32961 459e53a 7c1137f 459e53a 338edbb 459e53a 338edbb 459e53a 7c1137f ef627ec d5ef4ac 7c1137f d5ef4ac 7c1137f ef627ec d5ef4ac ef627ec d5ef4ac ef627ec d5ef4ac ef627ec b5194e5 7c1137f d5ef4ac 7c1137f ef627ec 7c1137f ef627ec d5ef4ac 7c1137f d5ef4ac 7c1137f d5ef4ac ef627ec d5ef4ac b5194e5 d5ef4ac 7c1137f b5194e5 d5ef4ac 7c1137f d5ef4ac 6c5d7a8 d5ef4ac 9ff970f d5ef4ac 6c5d7a8 d5ef4ac 7c1137f 6c5d7a8 d5ef4ac 7c1137f 6c5d7a8 ef627ec 6c5d7a8 ef627ec 6c5d7a8 7c1137f 6c5d7a8 b5194e5 ef627ec 6c5d7a8 ef627ec 6c5d7a8 ef627ec 6c5d7a8 ef627ec 6c5d7a8 7c1137f 6c5d7a8 7c1137f ef627ec 7c1137f 6c5d7a8 ef627ec d5ef4ac 7c1137f d5ef4ac ef627ec fc6af73 ef627ec d5ef4ac ef627ec d5ef4ac ef627ec d5ef4ac ef627ec d5ef4ac ef627ec d5ef4ac ef627ec d5ef4ac 7c1137f d5ef4ac ef627ec d5ef4ac 7c1137f d5ef4ac ef627ec d5ef4ac ef627ec d5ef4ac ef627ec d5ef4ac ef627ec d5ef4ac 7c1137f ef627ec d5ef4ac ef627ec b5194e5 d5ef4ac ef627ec d5ef4ac 4942dfb 0f55b7f ef627ec 0f55b7f 9ff970f 0f55b7f 9ff970f d95397a 9ff970f 7c1137f d5ef4ac 7c1137f d5ef4ac ef627ec d5ef4ac ef627ec d5ef4ac ef627ec 7c1137f d5ef4ac ef627ec d5ef4ac 7c1137f d5ef4ac fc6af73 d5ef4ac 7c1137f d5ef4ac 7c1137f ef627ec 7c1137f d5ef4ac 7c1137f d5ef4ac 7c1137f d5ef4ac 7c1137f d5ef4ac 7c1137f d5ef4ac 7c1137f d5ef4ac 7c1137f d5ef4ac 7c1137f d5ef4ac 7c1137f d5ef4ac 7c1137f d5ef4ac 7c1137f d5ef4ac 7c1137f d5ef4ac 7c1137f ef627ec 7c1137f d5ef4ac 7c1137f d5ef4ac ef627ec d5ef4ac 7c1137f d5ef4ac ef627ec d5ef4ac ef627ec d5ef4ac b5194e5 ef627ec d5ef4ac b5194e5 d5ef4ac ef627ec b5194e5 d5ef4ac 7c1137f 6c5d7a8 7c1137f 6c5d7a8 7c1137f 6c5d7a8 7c1137f 6c5d7a8 7c1137f 6c5d7a8 7c1137f 6c5d7a8 7c1137f ef627ec 7c1137f d5ef4ac b5194e5 d5ef4ac 7c1137f ef627ec 6c5d7a8 d5ef4ac 7c1137f d5ef4ac ef627ec d5ef4ac ef627ec d5ef4ac ef627ec d5ef4ac ef627ec d5ef4ac ef627ec d5ef4ac ef627ec d5ef4ac ef627ec d5ef4ac ef627ec d5ef4ac ef627ec d5ef4ac ef627ec d5ef4ac ef627ec d5ef4ac ef627ec 7c1137f d5ef4ac cd171e7 b5194e5 ef627ec b5194e5 ef627ec 7c1137f ef627ec 7c1137f 8df8c7f ef627ec 7c1137f ef627ec d5ef4ac ef627ec 7c1137f b5194e5 d5ef4ac ef627ec b5194e5 d5ef4ac 7c1137f ef627ec 7c1137f d5ef4ac 7c1137f d5ef4ac 7c1137f 6c5d7a8 d5ef4ac 6c5d7a8 7c1137f 6c5d7a8 7c1137f 6c5d7a8 7c1137f 6c5d7a8 7c1137f d5ef4ac 7c1137f 6c5d7a8 7c1137f 6c5d7a8 7c1137f 6c5d7a8 7c1137f 6c5d7a8 7c1137f d5ef4ac 7c1137f d5ef4ac 7c1137f d5ef4ac 6c5d7a8 7c1137f d5ef4ac 7c1137f 6c5d7a8 7c1137f 6c5d7a8 7c1137f 6c5d7a8 7c1137f 6c5d7a8 7c1137f 6c5d7a8 7c1137f 6c5d7a8 7c1137f 6c5d7a8 7c1137f d5ef4ac 7c1137f 6c5d7a8 7c1137f 6c5d7a8 7c1137f 6c5d7a8 7c1137f 6c5d7a8 7c1137f 6c5d7a8 7c1137f 6c5d7a8 7c1137f 6c5d7a8 7c1137f d5ef4ac 6c5d7a8 7c1137f 6c5d7a8 7c1137f 6c5d7a8 7c1137f d5ef4ac 6c5d7a8 7c1137f d5ef4ac 7c1137f 6c5d7a8 7c1137f 6c5d7a8 7c1137f 6c5d7a8 7c1137f 6c5d7a8 7c1137f 6c5d7a8 7c1137f 6c5d7a8 7c1137f 6c5d7a8 7c1137f 6c5d7a8 7c1137f 6c5d7a8 7c1137f d5ef4ac 338edbb d5ef4ac 7c1137f d5ef4ac fc6af73 4784d11 f41cb83 7c1137f 196ef1d 7c1137f c784a33 196ef1d 7c1137f c784a33 196ef1d 7c1137f 196ef1d 7c1137f 853a668 196ef1d c6da068 88c66d1 196ef1d 7c1137f a0b2fc3 196ef1d c784a33 196ef1d 7c1137f f41cb83 c784a33 f41cb83 7c1137f c784a33 7c1137f c784a33 4c6eaf3 338edbb 7c1137f f41cb83 c784a33 4c6eaf3 ef627ec c784a33 9ff970f f41cb83 c784a33 4c6eaf3 7c1137f 338edbb 7c1137f f46e5c5 f41cb83 c784a33 7c1137f 4c6eaf3 c6da068 f41cb83 4c6eaf3 f41cb83 4c6eaf3 f41cb83 4c6eaf3 f41cb83 4c6eaf3 f41cb83 c6da068 f41cb83 338edbb f41cb83 c784a33 f41cb83 c784a33 4c6eaf3 f41cb83 4c6eaf3 f41cb83 c784a33 f41cb83 c784a33 f41cb83 c784a33 f41cb83 c784a33 f41cb83 c784a33 f41cb83 c784a33 f41cb83 c784a33 251c735 6c5d7a8 4c6eaf3 c784a33 9ff970f 7c1137f 338edbb 7c1137f 4c6eaf3 c784a33 4c6eaf3 6c5d7a8 d5ef4ac 4c6eaf3 c784a33 d5ef4ac 4c6eaf3 8cd25d3 7c1137f c784a33 4c6eaf3 c784a33 6c5d7a8 4c6eaf3 6c5d7a8 c784a33 7c1137f 4c6eaf3 7c1137f 4c6eaf3 c784a33 4c6eaf3 7c1137f f41cb83 7c1137f f41cb83 7c1137f d5ef4ac fc6af73 7c1137f 338edbb 7c1137f fc6af73 d5ef4ac 7c1137f d5ef4ac ef627ec d5ef4ac ef627ec d5ef4ac 338edbb 7c1137f 338edbb 7c1137f fc6af73 338edbb fc6af73 7c1137f 4c6eaf3 ef627ec d5ef4ac 7c1137f f41cb83 7c1137f f41cb83 7c1137f f41cb83 7c1137f f41cb83 7c1137f ef627ec d5ef4ac e9ef6c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 |
import gradio as gr
from contextlib import contextmanager
from ultralytics import YOLO
import cv2
import numpy as np
from PIL import Image
import torch
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
from datetime import datetime
from tensorflow.keras.models import load_model
import os
import tempfile
#fich
import sqlite3
from sqlite3 import Error
import re # Module pour les expressions régulières
# Initialisation de la base de données
# ------------------------------
# 1. CHARGEMENT DES MODÈLES
# ------------------------------
# Modèle CNN pour reconnaissance des logos
cnn_logo_model = load_model('logo_model_cnn.h5')
# Modèle CNN pour reconnaissance des couleurs (remplace YOLO)
color_model = load_model("vehicle_color.h5")
color_classes = ['black', 'blue', 'brown', 'green', 'pink', 'red', 'silver', 'white', 'yellow']
print(f"Color model input shape: {color_model.input_shape}")
# Chargement automatique des classes depuis le dossier train
logo_classes = [
'Alfa romeo', 'Audi', 'BMW', 'Chevrolet', 'Citroen', 'Dacia', 'Daewoo',
'Dodge', 'Ferrari', 'Fiat', 'Ford', 'Honda', 'Hyundai', 'Jaguar', 'Jeep',
'Kia', 'Lada', 'Lancia', 'Land rover', 'Lexus', 'Maserati', 'Mazda',
'Mercedes', 'Mitsubishi', 'Nissan', 'Opel', 'Peugeot', 'Porsche',
'Renault', 'Rover', 'Saab', 'Seat', 'Skoda', 'Subaru', 'Suzuki',
'Tata', 'Tesla', 'Toyota', 'Volkswagen', 'Volvo'
]
# Modèles YOLO (sans le modèle de couleur)
model_orientation = YOLO("direction_best.pt")
model_plate_detection = YOLO("plate_detection.pt")
model_logo_detection = YOLO("car_logo_detection.pt")
model_characters = YOLO("character_detetion.pt")
model_vehicle = YOLO("vehicle_recognition.pt")
# Modèle TrOCR pour reconnaissance de caractères
trocr_model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-printed")
trocr_processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-printed")
# Modèles de reconnaissance de modèle par marque
model_per_brand = {
'nissan': load_model("nissan_model_final2.keras"),
'chevrolet': load_model("chevrolet_model_final2.keras"),
}
model_labels = {
'nissan': ['nissan-altima', 'nissan-armada', 'nissan-datsun', 'nissan-maxima', 'nissan-navara', 'nissan-patrol', 'nissan-sunny'],
'chevrolet': ['chevrolet-aveo', 'chevrolet-impala', 'chevrolet-malibu', 'chevrolet-silverado', 'chevrolet-tahoe', 'chevrolet-traverse'],
}
# ------------------------------
# 2. DICTIONNAIRES DE RÉFÉRENCE
# ------------------------------
CATEGORIES = {
'1': "Passenger vehicles",
'2': "Trucks",
'3': "Vans",
'4': "Coaches and buses",
'5': "Road tractors",
'6': "Other tractors",
'7': "Special vehicles",
'8': "Trailers and semi-trailers",
'9': "Motorcycles"
}
WILAYAS = {
"01": "Adrar", "02": "Chlef", "03": "Laghouat", "04": "Oum El Bouaghi",
"05": "Batna", "06": "Béjaïa", "07": "Biskra", "08": "Béchar",
"09": "Blida", "10": "Bouira", "11": "Tamanrasset", "12": "Tébessa",
"13": "Tlemcen", "14": "Tiaret", "15": "Tizi Ouzou", "16": "Alger",
"17": "Djelfa", "18": "Jijel", "19": "Sétif", "20": "Saïda",
"21": "Skikda", "22": "Sidi Bel Abbès", "23": "Annaba", "24": "Guelma",
"25": "Constantine", "26": "Médéa", "27": "Mostaganem", "28": "MSila",
"29": "Mascara", "30": "Ouargla", "31": "Oran", "32": "El Bayadh",
"33": "Illizi", "34": "Bordj Bou Arreridj", "35": "Boumerdès",
"36": "El Tarf", "37": "Tindouf", "38": "Tissemsilt", "39": "El Oued",
"40": "Khenchela", "41": "Souk Ahras", "42": "Tipaza", "43": "Mila",
"44": "Aïn Defla", "45": "Naâma", "46": "Aïn Témouchent",
"47": "Ghardaïa", "48": "Relizane",
"49": "El M'Ghair", "50": "El Menia",
"51": "Ouled Djellal", "52": "Bordj Badji Mokhtar",
"53": "Béni Abbès", "54": "Timimoun",
"55": "Touggourt", "56": "Djanet",
"57": "In Salah", "58": "In Guezzam"
}
# ------------------------------
# 3. VARIABLES PARTAGÉES
# ------------------------------
shared_results = {
"original_image": None,
"img_rgb": None,
"img_draw": None,
"plate_crop_img": None,
"logo_crop_img": None,
"plate_with_chars_img": None,
"trocr_char_list": [],
"trocr_combined_text": "",
"classification_result": "",
"label_color": "",
"label_orientation": "",
"vehicle_type": "",
"vehicle_model": "",
"vehicle_brand": "",
"logo_recognition_results": [],
"current_frame": None,
"video_path": None,
"video_processing": False,
"frame_count": 0,
"total_frames": 0,
"original_video_dimensions": None,
"corrected_orientation": False,
"vehicle_box": None, # Pour stocker les coordonnées du véhicule détecté
"vehicle_detected": False,
"detection_boxes": {
"plate": None,
"logo": None,
"color": None,
"orientation": None
}
}
# ------------------------------
# 4. FONCTIONS UTILITAIRES
# ------------------------------
def save_complete_results(plate_info, color, model, orientation, vehicle_type, brand):
"""Sauvegarde toutes les informations dans resultats.txt"""
with open("/content/drive/MyDrive/resultats.txt", "a", encoding="utf-8") as f:
f.write("\n" + "="*60 + "\n")
f.write(f"ANALYSIS CARRIED OUT ON : {datetime.now().strftime('%d/%m/%Y %H:%M:%S')}\n")
f.write("="*60 + "\n\n")
# Section plaque d'immatriculation
f.write("PLATE INFORMATION:\n")
f.write("-"*50 + "\n")
if plate_info:
f.write(f"Numéro complet: {plate_info.get('matricule_complet', 'N/A')}\n")
f.write(f"Wilaya: {plate_info.get('wilaya', ('', 'N/A'))[1]} ({plate_info.get('wilaya', ('', ''))[0]})\n")
f.write(f"Année: {plate_info.get('annee', 'N/A')}\n")
f.write(f"Catégorie: {plate_info.get('categorie', ('', 'N/A'))[1]} ({plate_info.get('categorie', ('', ''))[0]})\n")
f.write(f"Série: {plate_info.get('serie', 'N/A')}\n")
else:
f.write("Aucune information de plaque disponible\n")
# Section caractéristiques véhicule
f.write("\nCARACTÉRISTIQUES VÉHICULE:\n")
f.write("-"*50 + "\n")
f.write(f"Couleur: {color if color else 'Not detected'}\n")
f.write(f"Marque: {brand if brand else 'Not detected'}\n")
f.write(f"Modèle: {model if model else 'Not detected'}\n")
f.write(f"Orientation: {orientation if orientation else 'Not detected'}\n")
f.write(f"Type de véhicule: {vehicle_type if vehicle_type else 'Not detected'}\n")
f.write("\n" + "="*60 + "\n\n")
def format_vehicle_type(class_name):
"""Formate les noms des classes de véhicules pour l'affichage"""
vehicle_types = {
'car': 'CAR',
'truck': 'TRUCK',
'bus': 'BUS',
'motorcycle': 'MOTORCYCLE',
'van': 'VAN',
# Ajoutez d'autres types selon votre modèle
}
return vehicle_types.get(class_name.lower(), class_name.upper())
def preprocess_image(image):
return image # Retourne l'image originale en cas d'erreur
# Ajoutez cette fonction dans la section des fonctions utilitaires
def verify_color_model():
"""Vérifier que le modèle de couleur fonctionne correctement"""
try:
# Créer une image test rouge
test_img = np.zeros((128, 128, 3), dtype=np.uint8)
test_img[:,:,0] = 255 # R=255, G=0, B=0 (rouge)
# Sauvegarder et prédire
cv2.imwrite("/tmp/test_red.jpg", test_img)
color, confidence = predict_color("/tmp/test_red.jpg")
print(f"Test modèle couleur - Devrait être 'red': {color} ({confidence}%)")
# Vérifier les classes
print(f"Classes disponibles: {color_classes}")
# Vérifier la forme d'entrée du modèle
print(f"Forme d'entrée attendue: {color_model.input_shape}")
except Exception as e:
print(f"Échec du test du modèle couleur: {e}")
# Appelez cette fonction après le chargement du modèle
verify_color_model()
def is_algerian_plate(text):
digits_only = ''.join(c for c in text if c.isdigit())
if len(digits_only) < 5: # Moins strict sur la longueur
return False
wilaya_code = digits_only[-2:] # Vérifie seulement le code de wilaya
return wilaya_code.isdigit() and 1 <= int(wilaya_code) <= 58
def classify_plate(text):
"""Classification complète du numéro de plaque algérienne"""
try:
# Nettoyer le texte et s'assurer que c’est une plaque algérienne
clean_text = ''.join(c for c in text if c.isalnum()).upper()
if len(clean_text) < 7 or not is_algerian_plate(clean_text):
return None
matricule_complet = clean_text
position = clean_text[:-5]
middle = clean_text[-5:-2]
wilaya_code = clean_text[-2:]
if not middle.isdigit() or not wilaya_code.isdigit():
return None
categorie = middle[0]
annee = f"20{middle[1:]}" if middle[1:].isdigit() else "Unknown"
wilaya = WILAYAS.get(wilaya_code, "Wilaya Unknown")
vehicle_type = CATEGORIES.get(categorie, "Category Unknown")
return {
'matricule_complet': matricule_complet,
'wilaya': (wilaya_code, wilaya),
'annee': annee,
'categorie': (categorie, vehicle_type),
'serie': position
}
except Exception as e:
print(f"Classification error: {str(e)}")
return None
def predict_brand(image):
"""Prédire la marque de voiture à partir de l'image en utilisant le modèle CNN"""
try:
img = Image.fromarray(image).resize((224, 224))
img_array = np.array(img) / 255.0
img_array = np.expand_dims(img_array, axis=0)
predictions = cnn_logo_model.predict(img_array)
predicted_class = np.argmax(predictions[0])
confidence = predictions[0][predicted_class]
if confidence < 0.5:
return "Brand not detected (confidence too low)"
brand = logo_classes[predicted_class]
return f"{brand} (confiance: {confidence:.2f})"
except Exception as e:
print(f"Error predicting brand: {str(e)}")
return "Detection error"
def predict_color(img_input):
"""Fonction pour prédire la couleur du véhicule en utilisant le modèle CNN"""
try:
# Gestion des différents types d'entrée
if isinstance(img_input, str): # Si c'est un chemin de fichier
img = Image.open(img_input).convert('RGB').resize((128, 128))
elif isinstance(img_input, np.ndarray): # Si c'est un tableau numpy
if len(img_input.shape) == 2: # Image en niveaux de gris
img = Image.fromarray(cv2.cvtColor(img_input, cv2.COLOR_GRAY2RGB)).resize((128, 128))
else: # Image couleur
img = Image.fromarray(cv2.cvtColor(img_input, cv2.COLOR_BGR2RGB)).resize((128, 128))
elif isinstance(img_input, Image.Image): # Si c'est déjà une Image PIL
img = img_input.convert('RGB').resize((128, 128))
else:
return "Inconnu", 0.0
# Conversion en array et normalisation
img_array = np.array(img) / 255.0
img_array = np.expand_dims(img_array, axis=0)
# Vérification des dimensions
if img_array.shape[1:] != (128, 128, 3):
return "Inconnu", 0.0
# Prédiction
prediction = color_model.predict(img_array, verbose=0)
predicted_index = np.argmax(prediction)
predicted_label = color_classes[predicted_index]
confidence = np.max(prediction) * 100
return predicted_label, confidence
except Exception as e:
print(f"Erreur lors de la prédiction de couleur: {e}")
return "Inconnu", 0.0
def recognize_logo(cropped_logo):
"""Reconnaître la marque à partir d'un logo détecté"""
try:
if cropped_logo.size == 0:
return "Logo too small for analysis"
resized_logo = cv2.resize(np.array(cropped_logo), (128, 128))
rgb_logo = cv2.cvtColor(resized_logo, cv2.COLOR_BGR2RGB)
normalized_logo = rgb_logo / 255.0
input_logo = np.expand_dims(normalized_logo, axis=0)
predictions = cnn_logo_model.predict(input_logo, verbose=0)
pred_index = np.argmax(predictions[0])
pred_label = logo_classes[pred_index]
pred_conf = predictions[0][pred_index]
if pred_conf < 0.5:
return f"Uncertain brand: {pred_label} ({pred_conf:.2f})"
return f"{pred_label} (confiance: {pred_conf:.2f})"
except Exception as e:
print(f"Logo recognition error: {str(e)}")
return "Parse error"
#########" recognize modele"
def recognize_model(brand, logo_crop):
"""Reconnaître le modèle spécifique d'une voiture à partir de son logo"""
try:
# Nettoyer le nom de la marque
clean_brand = brand.split('(')[0].strip().lower() if '(' in brand else brand.lower()
if clean_brand not in model_per_brand:
return f"Model detection not available for {brand}"
if logo_crop.size == 0:
return "Image too small for analysis"
model_recognizer = model_per_brand[clean_brand]
model_input_height, model_input_width = model_recognizer.input_shape[1:3]
# Prétraitement de l'image
resized_model = cv2.resize(np.array(logo_crop), (model_input_width, model_input_height))
normalized_model = resized_model / 255.0
input_model = np.expand_dims(normalized_model, axis=0)
# Prédiction
model_predictions = model_recognizer.predict(input_model, verbose=0)
model_index = np.argmax(model_predictions[0])
# Récupération du nom du modèle
if clean_brand in model_labels and model_index < len(model_labels[clean_brand]):
model_name = model_labels[clean_brand][model_index]
return model_name
else:
return f"Model {model_index} (no label available)"
except Exception as e:
print(f"Model recognition error: {str(e)}")
return "Detection error"
def draw_detection_boxes(image):
"""Dessiner toutes les boîtes de détection sur l'image"""
img_draw = image.copy()
# Boîte pour le véhicule (en premier pour qu'elle soit en arrière-plan)
if shared_results["vehicle_box"]:
x1, y1, x2, y2 = shared_results["vehicle_box"]
cv2.rectangle(img_draw, (x1, y1), (x2, y2), (0, 165, 255), 2)
vehicle_type = shared_results.get("vehicle_type", "VEHICLE")
cv2.putText(img_draw, vehicle_type, (x1, y1 - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 165, 255), 2)
# Boîte pour la plaque
if shared_results["detection_boxes"]["plate"]:
x1, y1, x2, y2 = shared_results["detection_boxes"]["plate"]
cv2.rectangle(img_draw, (x1, y1), (x2, y2), (0, 255, 0), 2) # Vert pour plaque
cv2.putText(img_draw, "PLATE", (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
# Boîte pour le logo
if shared_results["detection_boxes"]["logo"]:
x1, y1, x2, y2 = shared_results["detection_boxes"]["logo"]
cv2.rectangle(img_draw, (x1, y1), (x2, y2), (255, 0, 0), 2) # Bleu pour logo
cv2.putText(img_draw, "LOGO", (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (255, 0, 0), 2)
# Ajouter le modèle si détecté
if shared_results["vehicle_model"]:
model_text = shared_results["vehicle_model"].split("(")[0].strip() if "(" in shared_results["vehicle_model"] else shared_results["vehicle_model"]
cv2.putText(img_draw, f"Model: {model_text}", (x1, y2 + 20), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 0, 0), 2)
# Boîte pour la couleur
if shared_results["detection_boxes"]["color"]:
x1, y1, x2, y2 = shared_results["detection_boxes"]["color"]
cv2.rectangle(img_draw, (x1, y1), (x2, y2), (0, 0, 255), 2) # Rouge pour couleur
cv2.putText(img_draw, "COLOR", (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 2)
# Ajouter la couleur détectée
if shared_results["label_color"]:
cv2.putText(img_draw, f"{shared_results['label_color']}", (x1, y2 + 20), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
# Boîte pour l'orientation
if shared_results["detection_boxes"]["orientation"]:
x1, y1, x2, y2 = shared_results["detection_boxes"]["orientation"]
cv2.rectangle(img_draw, (x1, y1), (x2, y2), (255, 255, 0), 2) # Cyan pour orientation
cv2.putText(img_draw, "ORIENTATION", (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (255, 255, 0), 2)
# Ajouter l'orientation détectée
if shared_results["label_orientation"]:
cv2.putText(img_draw, f"{shared_results['label_orientation']}", (x1, y2 + 20), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 0), 2)
return img_draw
# ------------------------------
# 5. FONCTIONS PRINCIPALES
# ------------------------------
def load_input(input_data):
"""Charger une image ou une vidéo et préparer le premier frame"""
if isinstance(input_data, str): # Fichier (vidéo ou image)
if input_data.lower().endswith(('.png', '.jpg', '.jpeg')):
# Traitement comme une image
return load_image(input_data)
else:
# Traitement comme une vidéo
return load_video(input_data)
else: # Image directe (numpy array)
return load_image(input_data)
def load_image(image_path):
"""Charger et préparer l'image de base"""
if isinstance(image_path, str):
img = cv2.imread(image_path)
else: # Si c'est déjà un numpy array (cas du fichier uploadé)
img = cv2.cvtColor(image_path, cv2.COLOR_RGB2BGR)
if img is None:
raise gr.Error("Failed to read image")
# Appliquer le prétraitement
img_processed = preprocess_image(img)
img_rgb = cv2.cvtColor(img_processed, cv2.COLOR_BGR2RGB)
img_draw = img_rgb.copy()
shared_results["original_image"] = img
shared_results["img_rgb"] = img_rgb
shared_results["img_draw"] = img_draw
shared_results["video_processing"] = False
shared_results["corrected_orientation"] = False
# Réinitialiser les boîtes de détection
shared_results["detection_boxes"] = {
"plate": None,
"logo": None,
"color": None,
"orientation": None
}
return Image.fromarray(img_rgb)
def load_video(video_path):
"""Charger une vidéo et préparer le premier frame"""
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
raise gr.Error("Video playback failed")
# Sauvegarder le chemin de la vidéo et les informations
shared_results["video_path"] = video_path
shared_results["video_processing"] = True
shared_results["frame_count"] = 0
shared_results["total_frames"] = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
# Lire les dimensions originales
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
shared_results["original_video_dimensions"] = (width, height)
# Lire le premier frame
success, frame = cap.read()
cap.release()
if not success:
raise gr.Error("Failed to play first frame of video")
# Appliquer le prétraitement
frame_processed = preprocess_image(frame)
img_rgb = cv2.cvtColor(frame_processed, cv2.COLOR_BGR2RGB)
img_draw = img_rgb.copy()
shared_results["original_image"] = frame
shared_results["img_rgb"] = img_rgb
shared_results["img_draw"] = img_draw
shared_results["current_frame"] = frame_processed
shared_results["corrected_orientation"] = False
# Réinitialiser les boîtes de détection
shared_results["detection_boxes"] = {
"plate": None,
"logo": None,
"color": None,
"orientation": None
}
return Image.fromarray(img_rgb)
def get_next_video_frame():
"""Obtenir le frame suivant de la vidéo en cours"""
if not shared_results["video_processing"] or not shared_results["video_path"]:
return None
cap = cv2.VideoCapture(shared_results["video_path"])
if not cap.isOpened():
return None
# Aller au frame suivant
shared_results["frame_count"] += 1
cap.set(cv2.CAP_PROP_POS_FRAMES, shared_results["frame_count"])
success, frame = cap.read()
cap.release()
if not success:
# Fin de la vidéo, réinitialiser
shared_results["frame_count"] = 0
cap = cv2.VideoCapture(shared_results["video_path"])
success, frame = cap.read()
cap.release()
if not success:
return None
# Conserver les dimensions originales
frame = cv2.resize(frame, shared_results["original_video_dimensions"])
# Appliquer le prétraitement
frame_processed = preprocess_image(frame)
img_rgb = cv2.cvtColor(frame_processed, cv2.COLOR_BGR2RGB)
img_draw = img_rgb.copy()
shared_results["original_image"] = frame
shared_results["img_rgb"] = img_rgb
shared_results["img_draw"] = img_draw
shared_results["current_frame"] = frame_processed
shared_results["corrected_orientation"] = False
# Réinitialiser les boîtes de détection
shared_results["detection_boxes"] = {
"plate": None,
"logo": None,
"color": None,
"orientation": None
}
return Image.fromarray(img_rgb)
# 3. Ajouter une fonction pour détecter les véhicules
def detect_vehicle():
"""Détecter le véhicule principal dans l'image"""
if shared_results["img_rgb"] is None:
return "Veuillez d'abord charger une image/vidéo", None, ""
img_to_process = shared_results["img_rgb"]
if shared_results.get("corrected_orientation", False):
height, width = img_to_process.shape[:2]
if height > width: # Portrait, besoin de rotation
img_to_process = cv2.rotate(img_to_process, cv2.ROTATE_90_CLOCKWISE)
results_vehicle = model_vehicle(img_to_process)
img_with_boxes = img_to_process.copy()
vehicle_detected = False
vehicle_type = ""
highest_conf = 0
for r in results_vehicle:
if r.boxes:
for box in r.boxes:
conf = box.conf.item()
if conf < 0.5: # Seuil de confiance minimum
continue
if conf > highest_conf:
highest_conf = conf
x1, y1, x2, y2 = map(int, box.xyxy[0])
cls = int(box.cls[0])
vehicle_type = model_vehicle.names[cls].upper() # Utiliser model_vehicle.names
# Dessiner la boîte
cv2.rectangle(img_with_boxes, (x1, y1), (x2, y2), (0, 165, 255), 2)
cv2.putText(img_with_boxes, f"{vehicle_type} {conf:.2f}", (x1, y1 - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 165, 255), 2)
shared_results["vehicle_box"] = (x1, y1, x2, y2)
shared_results["vehicle_detected"] = True
shared_results["vehicle_type"] = vehicle_type
vehicle_detected = True
shared_results["img_draw"] = img_with_boxes
if vehicle_detected:
return f"{vehicle_type} détecté (confiance: {highest_conf:.2f})", Image.fromarray(img_with_boxes), vehicle_type
else:
shared_results["vehicle_box"] = None
shared_results["vehicle_detected"] = False
return "Aucun véhicule détecté (confiance trop faible)", Image.fromarray(img_with_boxes), ""
# 4. Modifier la fonction detect_color() pour utiliser la zone du véhicule si disponible
def detect_color():
"""Détecter la couleur du véhicule en utilisant le modèle CNN"""
if shared_results["img_rgb"] is None:
return "Please upload an image/video", None
try:
# Utiliser la zone du véhicule si détectée, sinon toute l'image
if shared_results["vehicle_detected"] and shared_results["vehicle_box"]:
x1, y1, x2, y2 = shared_results["vehicle_box"]
vehicle_roi = shared_results["img_rgb"][y1:y2, x1:x2]
else:
vehicle_roi = shared_results["img_rgb"]
# Convertir en format PIL pour la prédiction
vehicle_pil = Image.fromarray(vehicle_roi)
# Prédiction de la couleur
color, confidence = predict_color(vehicle_pil)
# Mettre à jour les résultats
shared_results["label_color"] = f"{color} ({confidence:.1f}%)"
# Dessiner la zone de détection
img_with_boxes = shared_results["img_draw"].copy()
if shared_results["vehicle_detected"] and shared_results["vehicle_box"]:
x1, y1, x2, y2 = shared_results["vehicle_box"]
shared_results["detection_boxes"]["color"] = (x1, y1, x2, y2)
cv2.rectangle(img_with_boxes, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.putText(img_with_boxes, "Color", (x1, y1-10),
cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0,255,0), 2)
cv2.putText(img_with_boxes, f"{color} ({confidence:.1f}%)", (x1, y2+20),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0,255,0), 2)
shared_results["img_draw"] = img_with_boxes
return f"Color: {color} ({confidence:.1f}%)", Image.fromarray(img_with_boxes)
except Exception as e:
print(f"Color detection error: {e}")
return f"Color detection failed: {str(e)}", Image.fromarray(shared_results["img_draw"])
def detect_orientation():
"""Détecter l'orientation du véhicule"""
if shared_results["img_rgb"] is None:
return "Please upload an image/video"
# S'assurer que l'image est dans le bon sens
img_to_process = shared_results["img_rgb"]
if shared_results["video_processing"]:
# Pour les vidéos, vérifier l'orientation et corriger si nécessaire
height, width = img_to_process.shape[:2]
if height > width: # Portrait, besoin de rotation
img_to_process = cv2.rotate(img_to_process, cv2.ROTATE_90_CLOCKWISE)
shared_results["corrected_orientation"] = True
results_orientation = model_orientation(img_to_process)
for r in results_orientation:
if hasattr(r, 'boxes') and r.boxes and hasattr(r.boxes, 'cls') and len(r.boxes.cls) > 0:
cls = int(r.boxes.cls[0])
shared_results["label_orientation"] = r.names[cls]
# Enregistrer la boîte de détection
box = r.boxes.xyxy[0].cpu().numpy()
x1, y1, x2, y2 = map(int, box)
shared_results["detection_boxes"]["orientation"] = (x1, y1, x2, y2)
# Mettre à jour l'image avec toutes les détections
img_with_boxes = draw_detection_boxes(shared_results["img_rgb"])
shared_results["img_draw"] = img_with_boxes
return f"Orientation: {shared_results['label_orientation']}" if shared_results['label_orientation'] else "Orientation not detected", Image.fromarray(img_with_boxes)
def detect_logo_and_model():
"""Détecter et reconnaître le logo et le modèle du véhicule"""
if shared_results["img_rgb"] is None:
return "Please upload an image first", None, None, None, None
shared_results["logo_recognition_results"] = []
img_draw = shared_results["img_draw"].copy()
detected_model = "Model not detected"
try:
results_logo = model_logo_detection(shared_results["img_rgb"])
if results_logo and results_logo[0].boxes:
for box in results_logo[0].boxes:
x1, y1, x2, y2 = map(int, box.xyxy[0])
cv2.rectangle(img_draw, (x1, y1), (x2, y2), (255, 0, 0), 2)
logo_crop = shared_results["img_rgb"][y1:y2, x1:x2]
shared_results["logo_crop_img"] = Image.fromarray(logo_crop)
# Reconnaissance du logo (marque)
logo_recognition = recognize_logo(shared_results["logo_crop_img"])
shared_results["logo_recognition_results"].append(logo_recognition)
cv2.putText(img_draw, "LOGO", (x1, y1 - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.9, (255,0,0), 2)
# Reconnaissance du modèle si la marque est détectée
if logo_recognition and "not detected" not in logo_recognition.lower():
try:
brand = logo_recognition.split('(')[0].strip().lower()
detected_model = recognize_model(brand, shared_results["logo_crop_img"])
# Mise à jour du texte sur l'image
cv2.putText(img_draw, f"Modèle: {detected_model}", (x1, y2 + 20),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 255), 2)
except Exception as e:
print(f"Model recognition failed: {str(e)}")
detected_model = "Model detection failed"
shared_results["vehicle_model"] = detected_model
# Détection globale de la marque si la détection du logo a échoué
if not shared_results["vehicle_brand"] or "not detected" in shared_results["vehicle_brand"].lower():
global_brand = predict_brand(shared_results["img_rgb"])
if global_brand and "not detected" not in global_brand.lower():
shared_results["vehicle_brand"] = global_brand
except Exception as e:
print(f"Error in logo and model detection: {str(e)}")
shared_results["vehicle_brand"] = "Detection error"
shared_results["vehicle_model"] = "Detection error"
logo_results_text = " | ".join(shared_results["logo_recognition_results"]) if shared_results["logo_recognition_results"] else "No logo recognized"
return (
f"Brand: {shared_results['vehicle_brand']}" if shared_results['vehicle_brand'] else "Brand not detected",
f"Model: {shared_results['vehicle_model']}" if shared_results['vehicle_model'] else "Model not detected",
f"Logo recognition: {logo_results_text}",
Image.fromarray(img_draw),
shared_results["logo_crop_img"]
)
def detect_plate():
"""Détecter la plaque d'immatriculation et reconnaître les caractères"""
if shared_results["img_rgb"] is None:
return "Please upload an image/video", None, None, None
shared_results["trocr_char_list"] = []
shared_results["trocr_combined_text"] = ""
img_to_process = shared_results["img_rgb"]
# Utiliser l'image corrigée si nécessaire
if shared_results.get("corrected_orientation", False):
height, width = img_to_process.shape[:2]
if height > width: # Portrait, besoin de rotation
img_to_process = cv2.rotate(img_to_process, cv2.ROTATE_90_CLOCKWISE)
# Si un véhicule a été détecté, utiliser cette zone pour la détection
if shared_results["vehicle_detected"] and shared_results["vehicle_box"]:
vx1, vy1, vx2, vy2 = shared_results["vehicle_box"]
roi = img_to_process[vy1:vy2, vx1:vx2]
results_plate = model_plate_detection(roi)
else:
results_plate = model_plate_detection(img_to_process)
if results_plate and results_plate[0].boxes:
for box in results_plate[0].boxes:
# Ajuster les coordonnées si on a utilisé la ROI du véhicule
if shared_results["vehicle_detected"] and shared_results["vehicle_box"]:
vx1, vy1, vx2, vy2 = shared_results["vehicle_box"]
rx1, ry1, rx2, ry2 = map(int, box.xyxy[0])
# Convertir en coordonnées absolues
x1 = vx1 + rx1
y1 = vy1 + ry1
x2 = vx1 + rx2
y2 = vy1 + ry2
else:
x1, y1, x2, y2 = map(int, box.xyxy[0])
shared_results["detection_boxes"]["plate"] = (x1, y1, x2, y2)
plate_crop = img_to_process[y1:y2, x1:x2]
shared_results["plate_crop_img"] = Image.fromarray(plate_crop)
plate_for_char_draw = plate_crop.copy()
# Détection des caractères
results_chars = model_characters(plate_crop)
char_boxes = []
for r in results_chars:
if r.boxes:
for box in r.boxes:
x1c, y1c, x2c, y2c = map(int, box.xyxy[0])
char_boxes.append(((x1c, y1c, x2c, y2c), x1c))
char_boxes.sort(key=lambda x: x[1])
for i, (coords, _) in enumerate(char_boxes):
x1c, y1c, x2c, y2c = coords
char_crop = plate_crop[y1c:y2c, x1c:x2c]
char_pil = Image.fromarray(char_crop).convert("RGB")
try:
inputs = trocr_processor(images=char_pil, return_tensors="pt").pixel_values
generated_ids = trocr_model.generate(inputs)
predicted_char = trocr_processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
shared_results["trocr_char_list"].append(predicted_char)
except Exception as e:
shared_results["trocr_char_list"].append("?")
cv2.rectangle(plate_for_char_draw, (x1c, y1c), (x2c, y2c), (255, 0, 255), 1)
cv2.putText(plate_for_char_draw, predicted_char, (x1c, y1c - 5),
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 0, 255), 1)
shared_results["plate_with_chars_img"] = Image.fromarray(plate_for_char_draw)
shared_results["trocr_combined_text"] = ''.join(shared_results["trocr_char_list"])
break
# Mettre à jour l'image avec toutes les détections
img_with_boxes = draw_detection_boxes(shared_results["img_rgb"])
shared_results["img_draw"] = img_with_boxes
return (
Image.fromarray(img_with_boxes),
shared_results["plate_crop_img"],
shared_results["plate_with_chars_img"],
shared_results["trocr_char_list"]
)
def is_empty_plate(cropped_plate_image):
"""Détecte si la plaque est visuellement vide (espace blanc)"""
if cropped_plate_image is None:
return True
# Convertir en numpy array si c'est une image PIL
if isinstance(cropped_plate_image, Image.Image):
plate_img = np.array(cropped_plate_image)
else:
plate_img = cropped_plate_image
# Convertir en niveaux de gris
gray = cv2.cvtColor(plate_img, cv2.COLOR_RGB2GRAY)
# Seuillage pour détecter les zones non blanches
_, thresholded = cv2.threshold(gray, 220, 255, cv2.THRESH_BINARY_INV)
# Compter les pixels non blancs (potentiels caractères)
non_white_pixels = cv2.countNonZero(thresholded)
# Si moins de 1% de pixels non blancs, considérer comme vide
total_pixels = gray.shape[0] * gray.shape[1]
return non_white_pixels < (0.01 * total_pixels)
def classify_plate_number():
"""Classifier le numéro de plaque détecté uniquement si elle est algérienne"""
if not shared_results["trocr_combined_text"]:
return "No plate text to classify", "", "❌ No plate detected", ""
text = shared_results["trocr_combined_text"]
if not is_algerian_plate(text):
return "Non-Algerian license plate detected", "Type not detected", "❌ Non-Algerian", ""
classified_plate = classify_plate(text)
if classified_plate:
shared_results["classified_plate"] = classified_plate
shared_results["classification_result"] = f"Plate: {classified_plate['matricule_complet']}\n"
shared_results["classification_result"] += f"Wilaya: {classified_plate['wilaya'][1]} ({classified_plate['wilaya'][0]})\n"
shared_results["classification_result"] += f"Year: {classified_plate['annee']}\n"
shared_results["classification_result"] += f"Category: {classified_plate['categorie'][1]} ({classified_plate['categorie'][0]})\n"
shared_results["classification_result"] += f"Serie: {classified_plate['serie']}\n"
shared_results["vehicle_type"] = classified_plate['categorie'][1]
save_complete_results(
plate_info=classified_plate,
color=shared_results["label_color"],
model=shared_results["vehicle_model"],
orientation=shared_results["label_orientation"],
vehicle_type=shared_results["vehicle_type"],
brand=shared_results["vehicle_brand"]
)
return (
shared_results["classification_result"],
f"Type: {shared_results['vehicle_type']}" if shared_results['vehicle_type'] else "Type not detected",
"✅ Algerian plate",
"Classification successful"
)
else:
return "Unable to classify the plate", "Type not detected", "❌ Invalid plate", ""
def next_frame():
"""Passer au frame suivant dans une vidéo"""
if not shared_results["video_processing"] or not shared_results["video_path"]:
return (
"No video being processed",
None, # original_image
None, # status_output
None, # color_output
None, # orientation_output
None, # logo_output
None, # model_output
None, # plate_classification
None # vehicle_type_output
)
cap = cv2.VideoCapture(shared_results["video_path"])
if not cap.isOpened():
return (
"Video playback error",
None, None, None, None, None, None, None, None
)
# Aller au frame suivant
shared_results["frame_count"] += 1
cap.set(cv2.CAP_PROP_POS_FRAMES, shared_results["frame_count"])
success, frame = cap.read()
cap.release()
if not success:
# Fin de la vidéo atteinte, revenir au début
shared_results["frame_count"] = 0
cap = cv2.VideoCapture(shared_results["video_path"])
success, frame = cap.read()
cap.release()
if not success:
return (
"Error reading first frame",
None, None, None, None, None, None, None, None
)
# Conserver les dimensions originales
frame = cv2.resize(frame, shared_results["original_video_dimensions"])
# Convertir et préparer l'image
img_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
img_draw = img_rgb.copy()
# Mettre à jour les résultats partagés
shared_results.update({
"original_image": frame,
"img_rgb": img_rgb,
"img_draw": img_draw,
"current_frame": frame,
"corrected_orientation": False,
"label_color": "",
"label_orientation": "",
"vehicle_type": "",
"vehicle_model": "",
"vehicle_brand": "",
"logo_recognition_results": [],
"trocr_char_list": [],
"trocr_combined_text": "",
"classification_result": "",
"vehicle_box": None,
"vehicle_detected": False,
"detection_boxes": {
"plate": None,
"logo": None,
"color": None,
"orientation": None
},
"plate_crop_img": None,
"logo_crop_img": None,
"plate_with_chars_img": None
})
# Retourner les résultats
return (
Image.fromarray(img_rgb), # original_image
f"Frame {shared_results['frame_count']}/{shared_results['total_frames']} - Ready for analysis", # status_output
None, # color_output (réinitialisé)
None, # orientation_output (réinitialisé)
None, # logo_output (réinitialisé)
None, # model_output (réinitialisé)
None, # plate_classification (réinitialisé)
None # vehicle_type_output (réinitialisé)
)
# ------------------------------
# CONFIGURATION DE LA BASE DE DONNÉES
# ------------------------------
# Modèle pour la validation des plages horaires
TIME_PATTERN = re.compile(r'^([01]?[0-9]|2[0-3]):[0-5][0-9]-([01]?[0-9]|2[0-3]):[0-5][0-9]$')
def init_database():
"""Initialiser la base de données SQLite"""
try:
conn = sqlite3.connect('/content/drive/MyDrive/vehicle_database.db')
cursor = conn.cursor()
# Créer la table si elle n'existe pas
cursor.execute('''
CREATE TABLE IF NOT EXISTS vehicles (
id INTEGER PRIMARY KEY AUTOINCREMENT,
plate_number TEXT UNIQUE NOT NULL,
brand TEXT,
model TEXT,
color TEXT,
orientation TEXT,
vehicle_type TEXT,
access_status TEXT,
time_slot TEXT,
registration_date TEXT,
last_access_date TEXT
)
''')
conn.commit()
return True
except Error as e:
print(f"Database error: {e}")
return False
finally:
if conn:
conn.close()
def save_vehicle(plate_info, color, model, brand, status, time_slot):
"""Enregistrer un véhicule dans la base de données"""
try:
conn = sqlite3.connect('vehicle_database.db')
cursor = conn.cursor()
# Vérifier si la plaque existe déjà
cursor.execute('SELECT plate_number FROM vehicles WHERE plate_number = ?',
(plate_info['matricule_complet'],))
exists = cursor.fetchone()
current_date = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
if exists:
# Mise à jour des informations
cursor.execute('''
UPDATE vehicles SET
brand = ?,
model = ?,
color = ?,
orientation = ?,
vehicle_type = ?,
access_status = ?,
time_slot = ?,
last_access_date = ?
WHERE plate_number = ?
''', (
brand,
model,
color,
shared_results.get("label_orientation", "Unknown"),
plate_info['categorie'][1],
status,
time_slot,
current_date,
plate_info['matricule_complet']
))
else:
# Nouvelle entrée
cursor.execute('''
INSERT INTO vehicles (
plate_number, brand, model, color, orientation,
vehicle_type, access_status, time_slot, registration_date, last_access_date
) VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
''', (
plate_info['matricule_complet'],
brand,
model,
color,
shared_results.get("label_orientation", "Unknown"),
plate_info['categorie'][1],
status,
time_slot,
current_date,
current_date
))
conn.commit()
return True, "Vehicle information saved successfully"
except Error as e:
return False, f"Database error: {e}"
finally:
if conn:
conn.close()
def check_vehicle(plate_number):
"""Vérifier si un véhicule existe dans la base"""
try:
conn = sqlite3.connect('vehicle_database.db')
cursor = conn.cursor()
cursor.execute('''
SELECT plate_number, brand, model, access_status, time_slot
FROM vehicles WHERE plate_number = ?
''', (plate_number,))
vehicle = cursor.fetchone()
if vehicle:
return True, f"Vehicle found:\nPlate: {vehicle[0]}\nBrand: {vehicle[1]}\nModel: {vehicle[2]}"
return False, "This vehicle is not registered"
except Error as e:
return False, f"Database error: {e}"
finally:
if conn:
conn.close()
def is_access_allowed(plate_number):
"""Vérifier si l'accès est autorisé pour ce véhicule"""
try:
conn = sqlite3.connect('vehicle_database.db')
cursor = conn.cursor()
cursor.execute('''
SELECT access_status, time_slot FROM vehicles WHERE plate_number = ?
''', (plate_number,))
result = cursor.fetchone()
if not result:
return False
status, time_slot = result
# Vérifier le statut d'accès
if status != "Authorized":
return False
# Vérifier la plage horaire si spécifiée
if time_slot and time_slot != "24/24":
if time_slot == "Custom...":
# Dans ce cas, nous devrions avoir un champ séparé pour le temps personnalisé
return False
current_time = datetime.now().time()
if "-" in time_slot:
start_str, end_str = time_slot.split("-")
start_time = datetime.strptime(start_str.strip(), "%H:%M").time()
end_time = datetime.strptime(end_str.strip(), "%H:%M").time()
if start_time <= current_time <= end_time:
return True
return False
return True
except Error as e:
print(f"Access check error: {e}")
return False
finally:
if conn:
conn.close()
def get_all_vehicles():
"""Récupérer tous les véhicules enregistrés"""
try:
conn = sqlite3.connect('vehicle_database.db')
cursor = conn.cursor()
cursor.execute('''
SELECT
plate_number, brand, model, color, orientation,
vehicle_type, access_status, time_slot, registration_date
FROM vehicles
ORDER BY registration_date DESC
''')
columns = [description[0] for description in cursor.description]
vehicles = cursor.fetchall()
return columns, vehicles
except Error as e:
print(f"Database error: {e}")
return [], []
finally:
if conn:
conn.close()
def export_database():
"""Exporter toute la base de données dans un fichier SQL"""
try:
# Créer un fichier temporaire
with tempfile.NamedTemporaryFile(suffix=".sql", delete=False) as tmp:
# Utiliser la commande SQLite pour sauvegarder
conn = sqlite3.connect('vehicle_database.db')
with open(tmp.name, 'w') as f:
for line in conn.iterdump():
f.write(f'{line}\n')
conn.close()
return gr.File(value=tmp.name, visible=True)
except Exception as e:
print(f"Export error: {e}")
return gr.File(visible=False)
def init_database():
"""Initialiser la base de données SQLite de manière robuste"""
conn = None
try:
conn = sqlite3.connect('vehicle_database.db')
cursor = conn.cursor()
# Vérification explicite de l'existence de la table
cursor.execute("SELECT name FROM sqlite_master WHERE type='table' AND name='vehicles'")
if not cursor.fetchone():
# Création complète de la table si elle n'existe pas
cursor.execute('''
CREATE TABLE vehicles (
id INTEGER PRIMARY KEY AUTOINCREMENT,
plate_number TEXT UNIQUE NOT NULL,
brand TEXT,
model TEXT,
color TEXT,
orientation TEXT,
vehicle_type TEXT,
access_status TEXT,
time_slot TEXT,
registration_date TEXT,
last_access_date TEXT
)
''')
conn.commit()
print("✅ Table 'vehicles' créée avec succès")
return True
except Error as e:
print(f"❌ Erreur base de données: {e}")
return False
finally:
if conn:
conn.close()
def process_video_frame(frame):
"""Traiter un frame vidéo avec toutes les détections"""
# Charger le frame
shared_results["img_rgb"] = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
shared_results["img_draw"] = shared_results["img_rgb"].copy()
# Exécuter toutes les détections
detect_vehicle()
detect_color()
detect_orientation()
detect_logo_and_model()
detect_plate()
# Retourner le frame annoté
return shared_results["img_draw"]
def save_modified_video():
"""Sauvegarder la vidéo annotée avec toutes les détections"""
if not shared_results.get("video_path"):
raise gr.Error("Aucune vidéo chargée")
# Préparer le writer vidéo
cap = cv2.VideoCapture(shared_results["video_path"])
if not cap.isOpened():
raise gr.Error("Impossible de lire la vidéo source")
fps = cap.get(cv2.CAP_PROP_FPS)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
# Créer un fichier temporaire pour la sortie
temp_dir = tempfile.gettempdir()
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
output_path = os.path.join(temp_dir, f"annotated_{timestamp}.mp4")
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
frame_count = 0
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
progress = gr.Progress()
try:
while True:
ret, frame = cap.read()
if not ret:
break
progress(frame_count / total_frames, f"Traitement du frame {frame_count}/{total_frames}")
# Utiliser le frame pré-annoté si disponible
if frame_count in shared_results.get("modified_frames", {}):
annotated_frame = np.array(shared_results["modified_frames"][frame_count])
else:
# Traiter le frame en temps réel si non déjà annoté
shared_results["img_rgb"] = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
shared_results["img_draw"] = shared_results["img_rgb"].copy()
shared_results["frame_count"] = frame_count
# Exécuter toutes les détections
detect_vehicle()
detect_color()
detect_orientation()
detect_logo_and_model()
detect_plate()
annotated_frame = shared_results["img_draw"]
# Convertir et écrire le frame
out.write(cv2.cvtColor(annotated_frame, cv2.COLOR_RGB2BGR))
frame_count += 1
except Exception as e:
raise gr.Error(f"Erreur lors de la sauvegarde: {str(e)}")
finally:
cap.release()
out.release()
# Vérifier que la vidéo a bien été créée
if not os.path.exists(output_path):
raise gr.Error("Échec de la création de la vidéo")
return output_path
def process_and_save_video():
"""Traiter et sauvegarder la vidéo annotée"""
if not shared_results.get("video_path"):
raise gr.Error("Aucune vidéo chargée")
# Créer un fichier temporaire pour la sortie
output_path = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name
cap = cv2.VideoCapture(shared_results["video_path"])
fps = cap.get(cv2.CAP_PROP_FPS)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
frame_count = 0
while True:
ret, frame = cap.read()
if not ret:
break
# Si le frame a été modifié, utiliser la version annotée
if frame_count in shared_results.get("modified_frames", {}):
annotated_frame = np.array(shared_results["modified_frames"][frame_count])
out.write(cv2.cvtColor(annotated_frame, cv2.COLOR_RGB2BGR))
else:
out.write(frame)
frame_count += 1
cap.release()
out.release()
return output_path
# ------------------------------
# 6. INTERFACE GRADIO
# ------------------------------
with gr.Blocks(title="🚗 Système de Reconnaissance de Véhicules Algériens", theme="soft") as demo:
# Page d'accueil
with gr.Tab("Accueil"):
with gr.Column():
# Contenu principal de la page d'accueil
gr.Markdown("# 🚗 An Intelligent Vehicle Recognition System for Access Control in Algeria")
gr.Markdown("""
** 🚗 OPENIVRS : Advanced solution for the detection and identification of Algerian vehicles.**
*Technologies used: YOLO, CNN, TrOCR, and image processing.*
""")
# Disposition en ligne pour image + fonctionnalités
with gr.Row():
# Colonne pour l'image
with gr.Column(scale=1):
welcome_img = gr.Image(
value="/content/drive/MyDrive/system.png",
label="Illustration of the system",
interactive=False
)
# Colonne pour les fonctionnalités
with gr.Column(scale=1):
gr.Markdown("""
### 🔧 Key Features:
- 🚘 Algerian license plate detection.
- 🚗🔤 Vehicle make and model recognition.
- 🎨🧭 Color classification and orientation.
- 🗄️🔐 Access management via database.
- 📤📊 Data export for analysis.
""")
# Page de détection
with gr.Tab("Vehicle Detection", id="detection"):
gr.Markdown("# 🚗 Vehicle Detection and Recognition")
gr.Markdown("Analyze Vehicle Characteristics from Images")
with gr.Row():
with gr.Column():
input_type = gr.Radio(["Image", "Video"], label="Entry type", value="Image", interactive=True)
file_input = gr.File(label="Drop an Image Here - or - Click to Upload",
file_types=["image", "video"])
load_btn = gr.Button("Upload Image", variant="primary")
# Ajout du lecteur vidéo compact (initialement caché)
video_player = gr.Video(
visible=False,
label="Aperçu vidéo",
interactive=False,
height=150 # Hauteur réduite pour un espace compact
)
frame_gallery = gr.Gallery(visible=False, label="Select a frame", columns=4)
frame_slider = gr.Slider(visible=False, interactive=True, label="Selected frame")
load_frame_btn = gr.Button(visible=False, value="Load the selected frame", variant="secondary")
with gr.Row():
detect_vehicle_btn = gr.Button("Vehicle Detection", variant="secondary")
detect_color_btn = gr.Button("Color Detection", variant="secondary")
with gr.Row():
detect_orientation_btn = gr.Button("Orientation Detection", variant="secondary")
detect_logo_btn = gr.Button("Brand and Model", variant="secondary")
with gr.Row():
detect_plate_btn = gr.Button("License Plate Detection", variant="secondary")
classify_plate_btn = gr.Button("Classify License Plate", variant="secondary")
with gr.Row():
next_frame_btn = gr.Button("Next Frame", visible=False)
save_video_btn = gr.Button("Save Video", visible=True, variant="primary")
with gr.Row():
saved_video = gr.Video(label="annotated video saved", visible= True, interactive=False)
with gr.Column():
original_image = gr.Image(label="Original Image")
processed_image = gr.Image(label="Annotated Image")
status_output = gr.Textbox(label="Statuts")
with gr.Tab("Vehicle"):
vehicle_type_output = gr.Textbox(label="Type de véhicule")
with gr.Tab("Color"):
color_output = gr.Textbox(label="Color detection")
with gr.Tab("Orientation"):
orientation_output = gr.Textbox(label="Orientation detection")
with gr.Tab("Brand & Model"):
with gr.Column():
logo_output = gr.Textbox(label="Brand detection")
model_output = gr.Textbox(label="model recognition")
logo_image = gr.Image(label="detected logo")
with gr.Tab("Plate"):
with gr.Column():
plate_image = gr.Image(label="Detected Plate")
plate_chars_image = gr.Image(label="plate with characters")
plate_chars_list = gr.Textbox(label="Detected characters")
with gr.Tab("Classification"):
with gr.Column():
plate_classification = gr.Textbox(label="Plate Details")
vehicle_type_output = gr.Textbox(label="Type de véhicule")
with gr.Row():
algerian_check_output = gr.Textbox(label="Origine", scale=2)
action_output = gr.Textbox(label="Action recommandée", scale=3)
# Page de gestion d'accès
with gr.Tab("Access Management", id="access"):
with gr.Column():
check_btn = gr.Button("🔍 Verify Vehicle", variant="primary")
save_btn = gr.Button("💾 Register", interactive=False, variant="primary")
with gr.Row(visible=False) as access_form:
with gr.Column():
access_status = gr.Radio(
["Authorized", "Not Authorized"],
label="Access Status"
)
time_range = gr.Dropdown(
["24/24", "8:00-16:00", "9:00-17:00", "Custom..."],
label="Time Slot"
)
custom_time = gr.Textbox(
visible=False,
placeholder="HH:MM-HH:MM",
label="Enter Time Slot"
)
save_btn = gr.Button("Confirm Registration", variant="primary")
access_output = gr.Textbox(label="Verification Result")
# Page de base de données
with gr.Tab("Database", id="database"):
with gr.Column():
with gr.Row():
refresh_db_btn = gr.Button("🔄 Refresh", variant="secondary")
export_csv_btn = gr.Button("📤 Export CSV", variant="secondary")
export_db_btn = gr.Button("💾 Exporter DB", variant="secondary")
db_table = gr.Dataframe(
headers=["Plaque ", "Marque", "Modèle", "Couleur", "Orientation", "Type", "Statut", "Plage horaire", "Date"],
datatype=["str", "str", "str", "str", "str", "str", "str"],
interactive=False,
label="Registered Vehicles"
)
csv_output = gr.File(label="Exported File", visible=False)
def update_input_visibility(input_type):
if input_type == "Video":
return gr.Button(visible=True)
else:
return gr.Button(visible=False)
input_type.change(
fn=update_input_visibility,
inputs=input_type,
outputs=next_frame_btn
)
##############################""
def extract_video_frames(video_path, num_frames=12):
"""Extraire plusieurs frames d'une vidéo pour la sélection"""
cap = cv2.VideoCapture(video_path)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
frames = []
# Extraire des frames régulièrement espacées
for i in range(num_frames):
frame_pos = int(i * (total_frames / num_frames))
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_pos)
ret, frame = cap.read()
if ret:
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frames.append((frame_pos, Image.fromarray(frame_rgb)))
cap.release()
return frames
##############
def process_load(input_type, files):
if files is None:
raise gr.Error("Veuillez sélectionner un fichier")
file_path = files.name if hasattr(files, 'name') else files
if input_type == "Image":
if not file_path.lower().endswith(('.png', '.jpg', '.jpeg')):
raise gr.Error("Veuillez sélectionner une image valide (PNG, JPG, JPEG)")
return (
load_image(file_path),
"Image chargée - Cliquez sur les boutons pour analyser",
gr.Button(visible=False),
gr.Gallery(visible=False),
gr.Slider(visible=False),
gr.Button(visible=False),
gr.Video(visible=False) # Cacher le lecteur vidéo
)
else: # Vidéo
if not file_path.lower().endswith(('.mp4', '.avi', '.mov')):
raise gr.Error("Veuillez sélectionner une vidéo valide (MP4, AVI, MOV)")
frames = extract_video_frames(file_path)
shared_results["video_path"] = file_path
shared_results["video_frames"] = frames
return (
None, # Pas d'image principale initiale
f"Vidéo chargée - {len(frames)} frames extraits",
gr.Button(visible=True),
gr.Gallery(visible=True, value=[(img, f"Frame {pos}") for pos, img in frames]),
gr.Slider(visible=True, maximum=len(frames)-1, value=0, step=1, label="Frame sélectionné"),
gr.Button(visible=True, value="Charger le frame sélectionné"),
gr.Video(visible=True, value=file_path, height=150) # Afficher la vidéo en petit
)
######################################
def load_selected_frame(selected_frame_idx):
if not shared_results.get("video_frames"):
raise gr.Error("No video loaded")
frame_pos, frame_img = shared_results["video_frames"][selected_frame_idx]
# Mettre à jour le frame courant dans les résultats partagés
cap = cv2.VideoCapture(shared_results["video_path"])
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_pos)
ret, frame = cap.read()
cap.release()
if not ret:
raise gr.Error("Error reading the selected frame")
# Convertir et préparer l'image
img_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
img_draw = img_rgb.copy()
# Mettre à jour les résultats partagés
shared_results.update({
"original_image": frame,
"img_rgb": img_rgb,
"img_draw": img_draw,
"current_frame": frame,
"corrected_orientation": False,
"frame_count": frame_pos,
"video_processing": True
})
return (
Image.fromarray(img_rgb),
f"Frame {frame_pos} loaded - Ready for analysis",
gr.Button(visible=True)
)
########################
# Nouveaux callbacks
def toggle_time_range(choice):
"""Afficher/masquer le champ personnalisé"""
if choice == "Custom...":
return gr.Textbox(visible=True)
return gr.Textbox(visible=False)
def verify_vehicle():
"""Vérifier l'existence du véhicule"""
if not shared_results["trocr_combined_text"]:
raise gr.Error("No License Plate Detected")
plate_info = classify_plate(shared_results["trocr_combined_text"])
if not plate_info:
raise gr.Error("Invalid License Plate")
exists, message = check_vehicle(plate_info['matricule_complet'])
if exists:
allowed = "✅ ACCESS ALLOWED" if is_access_allowed(plate_info['matricule_complet']) else "❌ ACCESS DENIED"
return {
access_output: f"{message}\n{allowed}",
access_form: gr.update(visible=False),
save_btn: gr.update(interactive=False)
}
else:
return {
access_output: message,
access_form: gr.update(visible=True),
save_btn: gr.update(interactive=True)
}
def save_vehicle_info(status, time_choice, custom_time_input):
"""Enregistrer les informations du véhicule"""
if not shared_results.get("classified_plate"):
raise gr.Error("No License Plate Information Available")
plate_info = shared_results["classified_plate"]
# Gestion du temps personnalisé
if time_choice == "Custom...":
if not TIME_PATTERN.match(custom_time_input):
raise gr.Error("Invalid Time Format Use HH:MM-HH:MM")
time_range = custom_time_input
else:
time_range = time_choice
# Get brand and model, handling cases where they might not be available
brand = shared_results.get("vehicle_brand", "Unknown")
model = shared_results.get("vehicle_model", "Unknown")
# Sauvegarde
success, message = save_vehicle(
plate_info,
shared_results.get("label_color", "Unknown"),
model,
brand,
status,
time_range
)
if not success:
raise gr.Error(message)
return {
access_output: message,
access_form: gr.update(visible=False),
save_btn: gr.update(interactive=False)
}
#--------------------------
def refresh_database():
"""Actualiser le tableau de la base de données"""
columns, vehicles = get_all_vehicles()
if vehicles:
return gr.Dataframe(value=vehicles, headers=columns)
raise gr.Error("No vehicles found or read error")
def export_to_csv():
"""Exporter la base de données en CSV"""
columns, vehicles = get_all_vehicles()
if not vehicles:
raise gr.Error("No vehicles to export")
# Créer un fichier CSV temporaire
with tempfile.NamedTemporaryFile(suffix=".csv", delete=False) as tmp:
with open(tmp.name, 'w', encoding='utf-8') as f:
# Écrire l'en-tête
f.write(",".join(columns) + "\n")
# Écrire les données
for vehicle in vehicles:
f.write(",".join(str(v) if v is not None else "" for v in vehicle) + "\n")
return gr.File(value=tmp.name, visible=True)
###############
#############
# Connexion des boutons aux fonctions
load_btn.click(
fn=process_load,
inputs=[input_type, file_input],
outputs=[original_image, status_output, next_frame_btn]
)
################
# Mettre à jour les connexions
load_btn.click(
fn=process_load,
inputs=[input_type, file_input],
outputs=[
original_image,
status_output,
next_frame_btn,
frame_gallery,
frame_slider,
load_frame_btn,
video_player
]
)
load_frame_btn.click(
fn=load_selected_frame,
inputs=[frame_slider],
outputs=[original_image, status_output, next_frame_btn]
)
#####################
###########
detect_vehicle_btn.click(
fn=detect_vehicle,
outputs=[status_output, processed_image, vehicle_type_output]
)
detect_color_btn.click(
fn=detect_color,
outputs=[color_output, processed_image]
)
detect_orientation_btn.click(
fn=detect_orientation,
outputs=[orientation_output, processed_image]
)
detect_logo_btn.click(
fn=detect_logo_and_model,
outputs=[logo_output, model_output, logo_output, processed_image, logo_image]
)
detect_plate_btn.click(
fn=detect_plate,
outputs=[processed_image, plate_image, plate_chars_image, plate_chars_list]
)
classify_plate_btn.click(
fn=classify_plate_number,
outputs=[
plate_classification,
vehicle_type_output,
algerian_check_output,
action_output
]
)
next_frame_btn.click(
fn=next_frame,
outputs=[original_image, status_output,
color_output, orientation_output,
logo_output, model_output,
plate_classification, vehicle_type_output]
)
save_video_btn.click(
fn=process_and_save_video,
outputs=saved_video
)
# Connecter les nouveaux composants
time_range.change(
fn=toggle_time_range,
inputs=time_range,
outputs=custom_time
)
check_btn.click(
fn=verify_vehicle,
outputs=[access_output, access_form, save_btn]
)
save_btn.click(
fn=save_vehicle_info,
inputs=[access_status, time_range, custom_time],
outputs=[access_output, access_form, save_btn]
)
#########
refresh_db_btn.click(
fn=refresh_database,
outputs=db_table
)
export_csv_btn.click(
fn=export_to_csv,
outputs=csv_output
)
# Fonction pour charger les données initiales
def load_initial_data():
init_database() # Créer la base SQLite si elle n'existe pas
columns, vehicles = get_all_vehicles()
return vehicles if vehicles else []
# Initialiser la base de données au démarrage
if not init_database():
print("Erreur lors de l'initialisation de la base de données")
else:
print("Base de données initialisée avec succès")
# Lancer l'interface
if __name__ == "__main__":
demo.launch() |