Spaces:
Running
Running
File size: 21,724 Bytes
c25a325 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 |
ο»Ώimport os
import torch
import tempfile
import gradio as gr
from fastapi import FastAPI, HTTPException
from fastapi.staticfiles import StaticFiles
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, HttpUrl
import subprocess
import json
from pathlib import Path
import logging
import requests
from urllib.parse import urlparse
from PIL import Image
import io
from typing import Optional
import aiohttp
import asyncio
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
app = FastAPI(title="OmniAvatar-14B API with ElevenLabs", version="1.0.0")
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Mount static files for serving generated videos
app.mount("/outputs", StaticFiles(directory="outputs"), name="outputs")
def get_video_url(output_path: str) -> str:
"""Convert local file path to accessible URL"""
try:
from pathlib import Path
filename = Path(output_path).name
# For HuggingFace Spaces, construct the URL
base_url = "https://bravedims-ai-avatar-chat.hf.space"
video_url = f"{base_url}/outputs/{filename}"
logger.info(f"Generated video URL: {video_url}")
return video_url
except Exception as e:
logger.error(f"Error creating video URL: {e}")
return output_path # Fallback to original path
# Pydantic models for request/response
class GenerateRequest(BaseModel):
prompt: str
text_to_speech: Optional[str] = None # Text to convert to speech
elevenlabs_audio_url: Optional[HttpUrl] = None # Direct audio URL
voice_id: Optional[str] = "21m00Tcm4TlvDq8ikWAM" # Default ElevenLabs voice
image_url: Optional[HttpUrl] = None
guidance_scale: float = 5.0
audio_scale: float = 3.0
num_steps: int = 30
sp_size: int = 1
tea_cache_l1_thresh: Optional[float] = None
class GenerateResponse(BaseModel):
message: str
output_path: str
processing_time: float
audio_generated: bool = False
# Import the robust TTS client as fallback
from robust_tts_client import RobustTTSClient
class ElevenLabsClient:
def __init__(self, api_key: str = None):
self.api_key = api_key or os.getenv("ELEVENLABS_API_KEY", "sk_c7a0b115cd48fc026226158c5ac87755b063c802ad892de6")
self.base_url = "https://api.elevenlabs.io/v1"
# Initialize fallback TTS client
self.fallback_tts = RobustTTSClient()
async def text_to_speech(self, text: str, voice_id: str = "21m00Tcm4TlvDq8ikWAM") -> str:
"""Convert text to speech using ElevenLabs with fallback to robust TTS"""
logger.info(f"Generating speech from text: {text[:50]}...")
logger.info(f"Voice ID: {voice_id}")
# Try ElevenLabs first
try:
return await self._elevenlabs_tts(text, voice_id)
except Exception as e:
logger.warning(f"ElevenLabs TTS failed: {e}")
logger.info("Falling back to robust TTS client...")
try:
return await self.fallback_tts.text_to_speech(text, voice_id)
except Exception as fallback_error:
logger.error(f"Fallback TTS also failed: {fallback_error}")
raise HTTPException(status_code=500, detail=f"All TTS methods failed. ElevenLabs: {e}, Fallback: {fallback_error}")
async def _elevenlabs_tts(self, text: str, voice_id: str) -> str:
"""Internal method for ElevenLabs API call"""
url = f"{self.base_url}/text-to-speech/{voice_id}"
headers = {
"Accept": "audio/mpeg",
"Content-Type": "application/json",
"xi-api-key": self.api_key
}
data = {
"text": text,
"model_id": "eleven_monolingual_v1",
"voice_settings": {
"stability": 0.5,
"similarity_boost": 0.5
}
}
logger.info(f"Calling ElevenLabs API: {url}")
logger.info(f"API Key configured: {'Yes' if self.api_key else 'No'}")
timeout = aiohttp.ClientTimeout(total=30) # 30 second timeout
async with aiohttp.ClientSession(timeout=timeout) as session:
async with session.post(url, headers=headers, json=data) as response:
logger.info(f"ElevenLabs response status: {response.status}")
if response.status != 200:
error_text = await response.text()
logger.error(f"ElevenLabs API error: {response.status} - {error_text}")
if response.status == 401:
raise Exception(f"ElevenLabs authentication failed. Please check API key.")
elif response.status == 429:
raise Exception(f"ElevenLabs rate limit exceeded. Please try again later.")
elif response.status == 422:
raise Exception(f"ElevenLabs request validation failed: {error_text}")
else:
raise Exception(f"ElevenLabs API error: {response.status} - {error_text}")
audio_content = await response.read()
if not audio_content:
raise Exception("ElevenLabs returned empty audio content")
logger.info(f"Received {len(audio_content)} bytes of audio from ElevenLabs")
# Save to temporary file
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp3')
temp_file.write(audio_content)
temp_file.close()
logger.info(f"Generated speech audio: {temp_file.name}")
return temp_file.name
class OmniAvatarAPI:
def __init__(self):
self.model_loaded = False
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.elevenlabs_client = ElevenLabsClient()
logger.info(f"Using device: {self.device}")
logger.info(f"ElevenLabs API Key configured: {'Yes' if self.elevenlabs_client.api_key else 'No'}")
def load_model(self):
"""Load the OmniAvatar model"""
try:
# Check if models are downloaded
model_paths = [
"./pretrained_models/Wan2.1-T2V-14B",
"./pretrained_models/OmniAvatar-14B",
"./pretrained_models/wav2vec2-base-960h"
]
for path in model_paths:
if not os.path.exists(path):
logger.error(f"Model path not found: {path}")
return False
self.model_loaded = True
logger.info("Models loaded successfully")
return True
except Exception as e:
logger.error(f"Error loading model: {str(e)}")
return False
async def download_file(self, url: str, suffix: str = "") -> str:
"""Download file from URL and save to temporary location"""
try:
async with aiohttp.ClientSession() as session:
async with session.get(str(url)) as response:
if response.status != 200:
raise HTTPException(status_code=400, detail=f"Failed to download file from URL: {url}")
content = await response.read()
# Create temporary file
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=suffix)
temp_file.write(content)
temp_file.close()
return temp_file.name
except aiohttp.ClientError as e:
logger.error(f"Network error downloading {url}: {e}")
raise HTTPException(status_code=400, detail=f"Network error downloading file: {e}")
except Exception as e:
logger.error(f"Error downloading file from {url}: {e}")
raise HTTPException(status_code=500, detail=f"Error downloading file: {e}")
def validate_audio_url(self, url: str) -> bool:
"""Validate if URL is likely an audio file"""
try:
parsed = urlparse(url)
# Check for common audio file extensions or ElevenLabs patterns
audio_extensions = ['.mp3', '.wav', '.m4a', '.ogg', '.aac']
is_audio_ext = any(parsed.path.lower().endswith(ext) for ext in audio_extensions)
is_elevenlabs = 'elevenlabs' in parsed.netloc.lower()
return is_audio_ext or is_elevenlabs or 'audio' in url.lower()
except:
return False
def validate_image_url(self, url: str) -> bool:
"""Validate if URL is likely an image file"""
try:
parsed = urlparse(url)
image_extensions = ['.jpg', '.jpeg', '.png', '.webp', '.bmp', '.gif']
return any(parsed.path.lower().endswith(ext) for ext in image_extensions)
except:
return False
async def generate_avatar(self, request: GenerateRequest) -> tuple[str, float, bool]:
"""Generate avatar video from prompt and audio/text"""
import time
start_time = time.time()
audio_generated = False
try:
# Determine audio source
audio_path = None
if request.text_to_speech:
# Generate speech from text using ElevenLabs
logger.info(f"Generating speech from text: {request.text_to_speech[:50]}...")
audio_path = await self.elevenlabs_client.text_to_speech(
request.text_to_speech,
request.voice_id or "21m00Tcm4TlvDq8ikWAM"
)
audio_generated = True
elif request.elevenlabs_audio_url:
# Download audio from provided URL
logger.info(f"Downloading audio from URL: {request.elevenlabs_audio_url}")
if not self.validate_audio_url(str(request.elevenlabs_audio_url)):
logger.warning(f"Audio URL may not be valid: {request.elevenlabs_audio_url}")
audio_path = await self.download_file(str(request.elevenlabs_audio_url), ".mp3")
else:
raise HTTPException(
status_code=400,
detail="Either text_to_speech or elevenlabs_audio_url must be provided"
)
# Download image if provided
image_path = None
if request.image_url:
logger.info(f"Downloading image from URL: {request.image_url}")
if not self.validate_image_url(str(request.image_url)):
logger.warning(f"Image URL may not be valid: {request.image_url}")
# Determine image extension from URL or default to .jpg
parsed = urlparse(str(request.image_url))
ext = os.path.splitext(parsed.path)[1] or ".jpg"
image_path = await self.download_file(str(request.image_url), ext)
# Create temporary input file for inference
with tempfile.NamedTemporaryFile(mode='w', suffix='.txt', delete=False) as f:
if image_path:
input_line = f"{request.prompt}@@{image_path}@@{audio_path}"
else:
input_line = f"{request.prompt}@@@@{audio_path}"
f.write(input_line)
temp_input_file = f.name
# Prepare inference command
cmd = [
"python", "-m", "torch.distributed.run",
"--standalone", f"--nproc_per_node={request.sp_size}",
"scripts/inference.py",
"--config", "configs/inference.yaml",
"--input_file", temp_input_file,
"--guidance_scale", str(request.guidance_scale),
"--audio_scale", str(request.audio_scale),
"--num_steps", str(request.num_steps)
]
if request.tea_cache_l1_thresh:
cmd.extend(["--tea_cache_l1_thresh", str(request.tea_cache_l1_thresh)])
logger.info(f"Running inference with command: {' '.join(cmd)}")
# Run inference
result = subprocess.run(cmd, capture_output=True, text=True)
# Clean up temporary files
os.unlink(temp_input_file)
os.unlink(audio_path)
if image_path:
os.unlink(image_path)
if result.returncode != 0:
logger.error(f"Inference failed: {result.stderr}")
raise Exception(f"Inference failed: {result.stderr}")
# Find output video file
output_dir = "./outputs"
if os.path.exists(output_dir):
video_files = [f for f in os.listdir(output_dir) if f.endswith(('.mp4', '.avi'))]
if video_files:
# Return the most recent video file
video_files.sort(key=lambda x: os.path.getmtime(os.path.join(output_dir, x)), reverse=True)
output_path = os.path.join(output_dir, video_files[0])
processing_time = time.time() - start_time
return output_path, processing_time, audio_generated
raise Exception("No output video generated")
except Exception as e:
# Clean up any temporary files in case of error
try:
if 'audio_path' in locals() and audio_path and os.path.exists(audio_path):
os.unlink(audio_path)
if 'image_path' in locals() and image_path and os.path.exists(image_path):
os.unlink(image_path)
if 'temp_input_file' in locals() and os.path.exists(temp_input_file):
os.unlink(temp_input_file)
except:
pass
logger.error(f"Generation error: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
# Initialize API
omni_api = OmniAvatarAPI()
@app.on_event("startup")
async def startup_event():
"""Load model on startup"""
success = omni_api.load_model()
if not success:
logger.warning("Model loading failed on startup")
@app.get("/health")
async def health_check():
"""Health check endpoint"""
return {
"status": "healthy",
"model_loaded": omni_api.model_loaded,
"device": omni_api.device,
"supports_elevenlabs": True,
"supports_image_urls": True,
"supports_text_to_speech": True,
"elevenlabs_api_configured": bool(omni_api.elevenlabs_client.api_key),
"fallback_tts_available": True
}
@app.post("/generate", response_model=GenerateResponse)
async def generate_avatar(request: GenerateRequest):
"""Generate avatar video from prompt, text/audio, and optional image URL"""
if not omni_api.model_loaded:
raise HTTPException(status_code=503, detail="Model not loaded")
logger.info(f"Generating avatar with prompt: {request.prompt}")
if request.text_to_speech:
logger.info(f"Text to speech: {request.text_to_speech[:100]}...")
logger.info(f"Voice ID: {request.voice_id}")
if request.elevenlabs_audio_url:
logger.info(f"Audio URL: {request.elevenlabs_audio_url}")
if request.image_url:
logger.info(f"Image URL: {request.image_url}")
try:
output_path, processing_time, audio_generated = await omni_api.generate_avatar(request)
return GenerateResponse(
message="Avatar generation completed successfully",
output_path=get_video_url(output_path),
processing_time=processing_time,
audio_generated=audio_generated
)
except HTTPException:
raise
except Exception as e:
logger.error(f"Unexpected error: {e}")
raise HTTPException(status_code=500, detail=f"Unexpected error: {e}")
# Enhanced Gradio interface with text-to-speech option
def gradio_generate(prompt, text_to_speech, audio_url, image_url, voice_id, guidance_scale, audio_scale, num_steps):
"""Gradio interface wrapper with text-to-speech support"""
if not omni_api.model_loaded:
return "Error: Model not loaded"
try:
# Create request object
request_data = {
"prompt": prompt,
"guidance_scale": guidance_scale,
"audio_scale": audio_scale,
"num_steps": int(num_steps)
}
# Add audio source
if text_to_speech and text_to_speech.strip():
request_data["text_to_speech"] = text_to_speech
request_data["voice_id"] = voice_id or "21m00Tcm4TlvDq8ikWAM"
elif audio_url and audio_url.strip():
request_data["elevenlabs_audio_url"] = audio_url
else:
return "Error: Please provide either text to speech or audio URL"
if image_url and image_url.strip():
request_data["image_url"] = image_url
request = GenerateRequest(**request_data)
# Run async function in sync context
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
output_path, processing_time, audio_generated = loop.run_until_complete(omni_api.generate_avatar(request))
loop.close()
return output_path
except Exception as e:
logger.error(f"Gradio generation error: {e}")
return f"Error: {str(e)}"
# Updated Gradio interface with text-to-speech support
iface = gr.Interface(
fn=gradio_generate,
inputs=[
gr.Textbox(
label="Prompt",
placeholder="Describe the character behavior (e.g., 'A friendly person explaining a concept')",
lines=2
),
gr.Textbox(
label="Text to Speech",
placeholder="Enter text to convert to speech using ElevenLabs",
lines=3,
info="This will be converted to speech automatically"
),
gr.Textbox(
label="OR Audio URL",
placeholder="https://api.elevenlabs.io/v1/text-to-speech/...",
info="Direct URL to audio file (alternative to text-to-speech)"
),
gr.Textbox(
label="Image URL (Optional)",
placeholder="https://example.com/image.jpg",
info="Direct URL to reference image (JPG, PNG, etc.)"
),
gr.Dropdown(
choices=["21m00Tcm4TlvDq8ikWAM", "pNInz6obpgDQGcFmaJgB", "EXAVITQu4vr4xnSDxMaL"],
value="21m00Tcm4TlvDq8ikWAM",
label="ElevenLabs Voice ID",
info="Choose voice for text-to-speech"
),
gr.Slider(minimum=1, maximum=10, value=5.0, label="Guidance Scale", info="4-6 recommended"),
gr.Slider(minimum=1, maximum=10, value=3.0, label="Audio Scale", info="Higher values = better lip-sync"),
gr.Slider(minimum=10, maximum=100, value=30, step=1, label="Number of Steps", info="20-50 recommended")
],
outputs=gr.Video(label="Generated Avatar Video"),
title="π OmniAvatar-14B with ElevenLabs TTS (+ Fallback)",
description="""
Generate avatar videos with lip-sync from text prompts and speech.
**Features:**
- β
**Text-to-Speech**: Enter text to generate speech automatically
- β
**ElevenLabs Integration**: High-quality voice synthesis
- β
**Fallback TTS**: Robust backup system if ElevenLabs fails
- β
**Audio URL Support**: Use pre-generated audio files
- β
**Image URL Support**: Reference images for character appearance
- β
**Customizable Parameters**: Fine-tune generation quality
**Usage:**
1. Enter a character description in the prompt
2. **Either** enter text for speech generation **OR** provide an audio URL
3. Optionally add a reference image URL
4. Choose voice and adjust parameters
5. Generate your avatar video!
**Tips:**
- Use guidance scale 4-6 for best prompt following
- Increase audio scale for better lip-sync
- Clear, descriptive prompts work best
- If ElevenLabs fails, fallback TTS will be used automatically
""",
examples=[
[
"A professional teacher explaining a mathematical concept with clear gestures",
"Hello students! Today we're going to learn about calculus and how derivatives work in real life.",
"",
"",
"21m00Tcm4TlvDq8ikWAM",
5.0,
3.5,
30
],
[
"A friendly presenter speaking confidently to an audience",
"Welcome everyone to our presentation on artificial intelligence and its applications!",
"",
"",
"pNInz6obpgDQGcFmaJgB",
5.5,
4.0,
35
]
]
)
# Mount Gradio app
app = gr.mount_gradio_app(app, iface, path="/gradio")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)
|