File size: 9,045 Bytes
e7ffb7d
 
 
 
 
 
bd1f2b1
 
e7ffb7d
 
 
bd1f2b1
e7ffb7d
 
 
bd1f2b1
7b4fc5d
e7ffb7d
7b4fc5d
e29fad2
e7ffb7d
 
 
 
 
 
 
 
 
 
bd1f2b1
e7ffb7d
 
 
 
 
 
 
 
 
 
 
bd1f2b1
e7ffb7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd1f2b1
e7ffb7d
 
 
 
 
 
 
7b4fc5d
e7ffb7d
 
 
 
 
 
7b4fc5d
e7ffb7d
 
 
 
 
 
7b4fc5d
e7ffb7d
 
 
 
 
 
7b4fc5d
e7ffb7d
 
 
 
7b4fc5d
e7ffb7d
 
7b4fc5d
e7ffb7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd1f2b1
e7ffb7d
 
7b4fc5d
e7ffb7d
 
 
bd1f2b1
e7ffb7d
 
 
7b4fc5d
e7ffb7d
 
 
 
 
 
 
 
bd1f2b1
e7ffb7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b4fc5d
e7ffb7d
 
 
 
bd1f2b1
e7ffb7d
 
 
7b4fc5d
e7ffb7d
 
 
7b4fc5d
e7ffb7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b4fc5d
e7ffb7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd1f2b1
 
e7ffb7d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
ο»Ώ#!/usr/bin/env python3
"""
OmniAvatar-14B Inference Script
Enhanced implementation for avatar video generation with adaptive body animation
"""

import os
import sys
import argparse
import yaml
import torch
import logging
import time
from pathlib import Path
from typing import Dict, Any

# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

def load_config(config_path: str) -> Dict[str, Any]:
    """Load configuration from YAML file"""
    try:
        with open(config_path, 'r') as f:
            config = yaml.safe_load(f)
        logger.info(f"βœ… Configuration loaded from {config_path}")
        return config
    except Exception as e:
        logger.error(f"❌ Failed to load config: {e}")
        raise

def parse_input_file(input_file: str) -> list:
    """
    Parse the input file with format:
    [prompt]@@[img_path]@@[audio_path]
    """
    try:
        with open(input_file, 'r') as f:
            lines = f.readlines()
        
        samples = []
        for line_num, line in enumerate(lines, 1):
            line = line.strip()
            if not line or line.startswith('#'):
                continue
                
            parts = line.split('@@')
            if len(parts) != 3:
                logger.warning(f"⚠️ Line {line_num} has invalid format, skipping: {line}")
                continue
            
            prompt, img_path, audio_path = parts
            
            # Validate paths
            if img_path and not os.path.exists(img_path):
                logger.warning(f"⚠️ Image not found: {img_path}")
                img_path = None
            
            if not os.path.exists(audio_path):
                logger.error(f"❌ Audio file not found: {audio_path}")
                continue
            
            samples.append({
                'prompt': prompt,
                'image_path': img_path if img_path else None,
                'audio_path': audio_path,
                'line_number': line_num
            })
        
        logger.info(f"πŸ“ Parsed {len(samples)} valid samples from {input_file}")
        return samples
        
    except Exception as e:
        logger.error(f"❌ Failed to parse input file: {e}")
        raise

def validate_models(config: Dict[str, Any]) -> bool:
    """Validate that all required models are available"""
    model_paths = [
        config['model']['base_model_path'],
        config['model']['omni_model_path'],
        config['model']['wav2vec_path']
    ]
    
    missing_models = []
    for path in model_paths:
        if not os.path.exists(path):
            missing_models.append(path)
        elif not any(Path(path).iterdir()):
            missing_models.append(f"{path} (empty directory)")
    
    if missing_models:
        logger.error("❌ Missing required models:")
        for model in missing_models:
            logger.error(f"   - {model}")
        logger.info("πŸ’‘ Run 'python setup_omniavatar.py' to download models")
        return False
    
    logger.info("βœ… All required models found")
    return True

def setup_output_directory(output_dir: str) -> str:
    """Setup output directory and return path"""
    os.makedirs(output_dir, exist_ok=True)
    
    # Create unique subdirectory for this run
    timestamp = time.strftime("%Y%m%d_%H%M%S")
    run_dir = os.path.join(output_dir, f"run_{timestamp}")
    os.makedirs(run_dir, exist_ok=True)
    
    logger.info(f"πŸ“ Output directory: {run_dir}")
    return run_dir

def mock_inference(sample: Dict[str, Any], config: Dict[str, Any], 
                  output_dir: str, args: argparse.Namespace) -> str:
    """
    Mock inference implementation
    In a real implementation, this would:
    1. Load the OmniAvatar models
    2. Process the audio with wav2vec2
    3. Generate video frames using the text-to-video model
    4. Apply audio-driven animation
    5. Render final video
    """
    
    logger.info(f"🎬 Processing sample {sample['line_number']}")
    logger.info(f"πŸ“ Prompt: {sample['prompt']}")
    logger.info(f"🎡 Audio: {sample['audio_path']}")
    if sample['image_path']:
        logger.info(f"πŸ–ΌοΈ Image: {sample['image_path']}")
    
    # Configuration
    logger.info("βš™οΈ Configuration:")
    logger.info(f"   - Guidance Scale: {args.guidance_scale}")
    logger.info(f"   - Audio Scale: {args.audio_scale}")
    logger.info(f"   - Steps: {args.num_steps}")
    logger.info(f"   - Max Tokens: {config.get('inference', {}).get('max_tokens', 30000)}")
    
    if args.tea_cache_l1_thresh:
        logger.info(f"   - TeaCache Threshold: {args.tea_cache_l1_thresh}")
    
    # Simulate processing time
    logger.info("πŸ”„ Generating avatar video...")
    time.sleep(2)  # Mock processing
    
    # Create mock output file
    output_filename = f"avatar_sample_{sample['line_number']:03d}.mp4"
    output_path = os.path.join(output_dir, output_filename)
    
    # Create a simple text file as placeholder for the video
    with open(output_path.replace('.mp4', '_info.txt'), 'w') as f:
        f.write(f"OmniAvatar-14B Output Information\n")
        f.write(f"Generated: {time.strftime('%Y-%m-%d %H:%M:%S')}\n")
        f.write(f"Prompt: {sample['prompt']}\n")
        f.write(f"Audio: {sample['audio_path']}\n")
        f.write(f"Image: {sample['image_path'] or 'None'}\n")
        f.write(f"Configuration: {args.__dict__}\n")
    
    logger.info(f"βœ… Mock output created: {output_path}")
    return output_path

def main():
    parser = argparse.ArgumentParser(
        description="OmniAvatar-14B Inference - Avatar Video Generation with Adaptive Body Animation"
    )
    parser.add_argument("--config", type=str, required=True, 
                       help="Configuration file path")
    parser.add_argument("--input_file", type=str, required=True, 
                       help="Input samples file")
    parser.add_argument("--guidance_scale", type=float, default=4.5, 
                       help="Guidance scale (4-6 recommended)")
    parser.add_argument("--audio_scale", type=float, default=3.0, 
                       help="Audio scale for lip-sync consistency")
    parser.add_argument("--num_steps", type=int, default=25, 
                       help="Number of inference steps (20-50 recommended)")
    parser.add_argument("--tea_cache_l1_thresh", type=float, default=None,
                       help="TeaCache L1 threshold (0.05-0.15 recommended)")
    parser.add_argument("--sp_size", type=int, default=1,
                       help="Sequence parallel size (number of GPUs)")
    parser.add_argument("--hp", type=str, default="",
                       help="Additional hyperparameters (comma-separated)")
    
    args = parser.parse_args()
    
    logger.info("πŸš€ OmniAvatar-14B Inference Starting")
    logger.info(f"πŸ“„ Config: {args.config}")
    logger.info(f"πŸ“ Input: {args.input_file}")
    logger.info(f"🎯 Parameters: guidance_scale={args.guidance_scale}, audio_scale={args.audio_scale}, steps={args.num_steps}")
    
    try:
        # Load configuration
        config = load_config(args.config)
        
        # Validate models
        if not validate_models(config):
            return 1
        
        # Parse input samples
        samples = parse_input_file(args.input_file)
        if not samples:
            logger.error("❌ No valid samples found in input file")
            return 1
        
        # Setup output directory
        output_dir = setup_output_directory(config.get('inference', {}).get('output_dir', './outputs'))
        
        # Process each sample
        total_samples = len(samples)
        successful_outputs = []
        
        for i, sample in enumerate(samples, 1):
            logger.info(f"πŸ“Š Processing sample {i}/{total_samples}")
            
            try:
                output_path = mock_inference(sample, config, output_dir, args)
                successful_outputs.append(output_path)
                
            except Exception as e:
                logger.error(f"❌ Failed to process sample {sample['line_number']}: {e}")
                continue
        
        # Summary
        logger.info("πŸŽ‰ Inference completed!")
        logger.info(f"βœ… Successfully processed: {len(successful_outputs)}/{total_samples} samples")
        logger.info(f"πŸ“ Output directory: {output_dir}")
        
        if successful_outputs:
            logger.info("πŸ“Ή Generated videos:")
            for output in successful_outputs:
                logger.info(f"   - {output}")
        
        # Implementation note
        logger.info("πŸ’‘ NOTE: This is a mock implementation.")
        logger.info("πŸ”— For full OmniAvatar functionality, integrate with:")
        logger.info("   https://github.com/Omni-Avatar/OmniAvatar")
        
        return 0
        
    except Exception as e:
        logger.error(f"❌ Inference failed: {e}")
        return 1

if __name__ == "__main__":
    sys.exit(main())