import os # STORAGE OPTIMIZATION: Check if running on HF Spaces and disable model downloads IS_HF_SPACE = any([ os.getenv("SPACE_ID"), os.getenv("SPACE_AUTHOR_NAME"), os.getenv("SPACES_BUILDKIT_VERSION"), "/home/user/app" in os.getcwd() ]) if IS_HF_SPACE: # Force TTS-only mode to prevent storage limit exceeded os.environ["DISABLE_MODEL_DOWNLOAD"] = "1" os.environ["TTS_ONLY_MODE"] = "1" os.environ["HF_SPACE_STORAGE_OPTIMIZED"] = "1" print("?? STORAGE OPTIMIZATION: Detected HF Space environment") print("??? TTS-only mode ENABLED (video generation disabled for storage limits)") print("?? Model auto-download DISABLED to prevent storage exceeded error") import os import torch import tempfile import gradio as gr from fastapi import FastAPI, HTTPException from fastapi.staticfiles import StaticFiles from fastapi.middleware.cors import CORSMiddleware from pydantic import BaseModel, HttpUrl import subprocess import json from pathlib import Path import logging import requests from urllib.parse import urlparse from PIL import Image import io from typing import Optional import aiohttp import asyncio from dotenv import load_dotenv # CRITICAL: HF Spaces compatibility fix try: from hf_spaces_fix import setup_hf_spaces_environment, HFSpacesCompatible setup_hf_spaces_environment() except ImportError: print('Warning: HF Spaces fix not available') # Load environment variables load_dotenv() # Set up logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Set environment variables for matplotlib, gradio, and huggingface cache os.environ['MPLCONFIGDIR'] = '/tmp/matplotlib' os.environ['GRADIO_ALLOW_FLAGGING'] = 'never' os.environ['HF_HOME'] = '/tmp/huggingface' # Use HF_HOME instead of deprecated TRANSFORMERS_CACHE os.environ['HF_DATASETS_CACHE'] = '/tmp/huggingface/datasets' os.environ['HUGGINGFACE_HUB_CACHE'] = '/tmp/huggingface/hub' # FastAPI app will be created after lifespan is defined # Create directories with proper permissions os.makedirs("outputs", exist_ok=True) os.makedirs("/tmp/matplotlib", exist_ok=True) os.makedirs("/tmp/huggingface", exist_ok=True) os.makedirs("/tmp/huggingface/transformers", exist_ok=True) os.makedirs("/tmp/huggingface/datasets", exist_ok=True) os.makedirs("/tmp/huggingface/hub", exist_ok=True) # Mount static files for serving generated videos def get_video_url(output_path: str) -> str: """Convert local file path to accessible URL""" try: from pathlib import Path filename = Path(output_path).name # For HuggingFace Spaces, construct the URL base_url = "https://bravedims-ai-avatar-chat.hf.space" video_url = f"{base_url}/outputs/{filename}" logger.info(f"Generated video URL: {video_url}") return video_url except Exception as e: logger.error(f"Error creating video URL: {e}") return output_path # Fallback to original path # Pydantic models for request/response class GenerateRequest(BaseModel): prompt: str text_to_speech: Optional[str] = None # Text to convert to speech audio_url: Optional[HttpUrl] = None # Direct audio URL voice_id: Optional[str] = "21m00Tcm4TlvDq8ikWAM" # Voice profile ID image_url: Optional[HttpUrl] = None guidance_scale: float = 5.0 audio_scale: float = 3.0 num_steps: int = 30 sp_size: int = 1 tea_cache_l1_thresh: Optional[float] = None class GenerateResponse(BaseModel): message: str output_path: str processing_time: float audio_generated: bool = False tts_method: Optional[str] = None # Try to import TTS clients, but make them optional try: from advanced_tts_client import AdvancedTTSClient ADVANCED_TTS_AVAILABLE = True logger.info("SUCCESS: Advanced TTS client available") except ImportError as e: ADVANCED_TTS_AVAILABLE = False logger.warning(f"WARNING: Advanced TTS client not available: {e}") # Always import the robust fallback try: from robust_tts_client import RobustTTSClient ROBUST_TTS_AVAILABLE = True logger.info("SUCCESS: Robust TTS client available") except ImportError as e: ROBUST_TTS_AVAILABLE = False logger.error(f"ERROR: Robust TTS client not available: {e}") class TTSManager: """Manages multiple TTS clients with fallback chain""" def __init__(self): # Initialize TTS clients based on availability self.advanced_tts = None self.robust_tts = None self.clients_loaded = False if ADVANCED_TTS_AVAILABLE: try: self.advanced_tts = AdvancedTTSClient() logger.info("SUCCESS: Advanced TTS client initialized") except Exception as e: logger.warning(f"WARNING: Advanced TTS client initialization failed: {e}") if ROBUST_TTS_AVAILABLE: try: self.robust_tts = RobustTTSClient() logger.info("SUCCESS: Robust TTS client initialized") except Exception as e: logger.error(f"ERROR: Robust TTS client initialization failed: {e}") if not self.advanced_tts and not self.robust_tts: logger.error("ERROR: No TTS clients available!") async def load_models(self): """Load TTS models""" try: logger.info("Loading TTS models...") # Try to load advanced TTS first if self.advanced_tts: try: logger.info("[PROCESS] Loading advanced TTS models (this may take a few minutes)...") success = await self.advanced_tts.load_models() if success: logger.info("SUCCESS: Advanced TTS models loaded successfully") else: logger.warning("WARNING: Advanced TTS models failed to load") except Exception as e: logger.warning(f"WARNING: Advanced TTS loading error: {e}") # Always ensure robust TTS is available if self.robust_tts: try: await self.robust_tts.load_model() logger.info("SUCCESS: Robust TTS fallback ready") except Exception as e: logger.error(f"ERROR: Robust TTS loading failed: {e}") self.clients_loaded = True return True except Exception as e: logger.error(f"ERROR: TTS manager initialization failed: {e}") return False async def text_to_speech(self, text: str, voice_id: Optional[str] = None) -> tuple[str, str]: """ Convert text to speech with fallback chain Returns: (audio_file_path, method_used) """ if not self.clients_loaded: logger.info("TTS models not loaded, loading now...") await self.load_models() logger.info(f"Generating speech: {text[:50]}...") logger.info(f"Voice ID: {voice_id}") # Try Advanced TTS first (Facebook VITS / SpeechT5) if self.advanced_tts: try: audio_path = await self.advanced_tts.text_to_speech(text, voice_id) return audio_path, "Facebook VITS/SpeechT5" except Exception as advanced_error: logger.warning(f"Advanced TTS failed: {advanced_error}") # Fall back to robust TTS if self.robust_tts: try: logger.info("Falling back to robust TTS...") audio_path = await self.robust_tts.text_to_speech(text, voice_id) return audio_path, "Robust TTS (Fallback)" except Exception as robust_error: logger.error(f"Robust TTS also failed: {robust_error}") # If we get here, all methods failed logger.error("All TTS methods failed!") raise HTTPException( status_code=500, detail="All TTS methods failed. Please check system configuration." ) async def get_available_voices(self): """Get available voice configurations""" try: if self.advanced_tts and hasattr(self.advanced_tts, 'get_available_voices'): return await self.advanced_tts.get_available_voices() except: pass # Return default voices if advanced TTS not available return { "21m00Tcm4TlvDq8ikWAM": "Female (Neutral)", "pNInz6obpgDQGcFmaJgB": "Male (Professional)", "EXAVITQu4vr4xnSDxMaL": "Female (Sweet)", "ErXwobaYiN019PkySvjV": "Male (Professional)", "TxGEqnHWrfGW9XjX": "Male (Deep)", "yoZ06aMxZJJ28mfd3POQ": "Unisex (Friendly)", "AZnzlk1XvdvUeBnXmlld": "Female (Strong)" } def get_tts_info(self): """Get TTS system information""" info = { "clients_loaded": self.clients_loaded, "advanced_tts_available": self.advanced_tts is not None, "robust_tts_available": self.robust_tts is not None, "primary_method": "Robust TTS" } try: if self.advanced_tts and hasattr(self.advanced_tts, 'get_model_info'): advanced_info = self.advanced_tts.get_model_info() info.update({ "advanced_tts_loaded": advanced_info.get("models_loaded", False), "transformers_available": advanced_info.get("transformers_available", False), "primary_method": "Facebook VITS/SpeechT5" if advanced_info.get("models_loaded") else "Robust TTS", "device": advanced_info.get("device", "cpu"), "vits_available": advanced_info.get("vits_available", False), "speecht5_available": advanced_info.get("speecht5_available", False) }) except Exception as e: logger.debug(f"Could not get advanced TTS info: {e}") return info # Import the VIDEO-FOCUSED engine try: from omniavatar_video_engine import video_engine VIDEO_ENGINE_AVAILABLE = True logger.info("SUCCESS: OmniAvatar Video Engine available") except ImportError as e: VIDEO_ENGINE_AVAILABLE = False logger.error(f"ERROR: OmniAvatar Video Engine not available: {e}") class OmniAvatarAPI: def __init__(self): self.model_loaded = False self.device = "cuda" if torch.cuda.is_available() else "cpu" self.tts_manager = TTSManager() logger.info(f"Using device: {self.device}") logger.info("Initialized with robust TTS system") def load_model(self): """Load the OmniAvatar model - now more flexible""" try: # Check if models are downloaded (but don't require them) model_paths = [ "./pretrained_models/Wan2.1-T2V-14B", "./pretrained_models/OmniAvatar-14B", "./pretrained_models/wav2vec2-base-960h" ] missing_models = [] for path in model_paths: if not os.path.exists(path): missing_models.append(path) if missing_models: logger.warning("WARNING: Some OmniAvatar models not found:") for model in missing_models: logger.warning(f" - {model}") logger.info("TIP: App will run in TTS-only mode (no video generation)") logger.info("TIP: To enable full avatar generation, download the required models") # Set as loaded but in limited mode self.model_loaded = False # Video generation disabled return True # But app can still run else: self.model_loaded = True logger.info("SUCCESS: All OmniAvatar models found - full functionality enabled") return True except Exception as e: logger.error(f"Error checking models: {str(e)}") logger.info("TIP: Continuing in TTS-only mode") self.model_loaded = False return True # Continue running async def download_file(self, url: str, suffix: str = "") -> str: """Download file from URL and save to temporary location""" try: async with aiohttp.ClientSession() as session: async with session.get(str(url)) as response: if response.status != 200: raise HTTPException(status_code=400, detail=f"Failed to download file from URL: {url}") content = await response.read() # Create temporary file temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=suffix) temp_file.write(content) temp_file.close() return temp_file.name except aiohttp.ClientError as e: logger.error(f"Network error downloading {url}: {e}") raise HTTPException(status_code=400, detail=f"Network error downloading file: {e}") except Exception as e: logger.error(f"Error downloading file from {url}: {e}") raise HTTPException(status_code=500, detail=f"Error downloading file: {e}") def validate_audio_url(self, url: str) -> bool: """Validate if URL is likely an audio file""" try: parsed = urlparse(url) # Check for common audio file extensions audio_extensions = ['.mp3', '.wav', '.m4a', '.ogg', '.aac', '.flac'] is_audio_ext = any(parsed.path.lower().endswith(ext) for ext in audio_extensions) return is_audio_ext or 'audio' in url.lower() except: return False def validate_image_url(self, url: str) -> bool: """Validate if URL is likely an image file""" try: parsed = urlparse(url) image_extensions = ['.jpg', '.jpeg', '.png', '.webp', '.bmp', '.gif'] return any(parsed.path.lower().endswith(ext) for ext in image_extensions) except: return False async def generate_avatar(self, request: GenerateRequest) -> tuple[str, float, bool, str]: """Generate avatar VIDEO - PRIMARY FUNCTIONALITY""" import time start_time = time.time() audio_generated = False method_used = "Unknown" logger.info("[VIDEO] STARTING AVATAR VIDEO GENERATION") logger.info(f"[INFO] Prompt: {request.prompt}") if VIDEO_ENGINE_AVAILABLE: try: # PRIORITIZE VIDEO GENERATION logger.info("[TARGET] Using OmniAvatar Video Engine for FULL video generation") # Handle audio source audio_path = None if request.text_to_speech: logger.info("[MIC] Generating audio from text...") audio_path, method_used = await self.tts_manager.text_to_speech( request.text_to_speech, request.voice_id or "21m00Tcm4TlvDq8ikWAM" ) audio_generated = True elif request.audio_url: logger.info("📥 Downloading audio from URL...") audio_path = await self.download_file(str(request.audio_url), ".mp3") method_used = "External Audio" else: raise HTTPException(status_code=400, detail="Either text_to_speech or audio_url required for video generation") # Handle image if provided image_path = None if request.image_url: logger.info("[IMAGE] Downloading reference image...") parsed = urlparse(str(request.image_url)) ext = os.path.splitext(parsed.path)[1] or ".jpg" image_path = await self.download_file(str(request.image_url), ext) # GENERATE VIDEO using OmniAvatar engine logger.info("[VIDEO] Generating avatar video with adaptive body animation...") video_path, generation_time = video_engine.generate_avatar_video( prompt=request.prompt, audio_path=audio_path, image_path=image_path, guidance_scale=request.guidance_scale, audio_scale=request.audio_scale, num_steps=request.num_steps ) processing_time = time.time() - start_time logger.info(f"SUCCESS: VIDEO GENERATED successfully in {processing_time:.1f}s") # Cleanup temporary files if audio_path and os.path.exists(audio_path): os.unlink(audio_path) if image_path and os.path.exists(image_path): os.unlink(image_path) return video_path, processing_time, audio_generated, f"OmniAvatar Video Generation ({method_used})" except Exception as e: logger.error(f"ERROR: Video generation failed: {e}") # For a VIDEO generation app, we should NOT fall back to audio-only # Instead, provide clear guidance if "models" in str(e).lower(): raise HTTPException( status_code=503, detail=f"Video generation requires OmniAvatar models (~30GB). Please run model download script. Error: {str(e)}" ) else: raise HTTPException(status_code=500, detail=f"Video generation failed: {str(e)}") # If video engine not available, this is a critical error for a VIDEO app raise HTTPException( status_code=503, detail="Video generation engine not available. This application requires OmniAvatar models for video generation." ) async def generate_avatar_BACKUP(self, request: GenerateRequest) -> tuple[str, float, bool, str]: """OLD TTS-ONLY METHOD - kept as backup reference. Generate avatar video from prompt and audio/text - now handles missing models""" import time start_time = time.time() audio_generated = False tts_method = None try: # Check if video generation is available if not self.model_loaded: logger.info("🎙️ Running in TTS-only mode (OmniAvatar models not available)") # Only generate audio, no video if request.text_to_speech: logger.info(f"Generating speech from text: {request.text_to_speech[:50]}...") audio_path, tts_method = await self.tts_manager.text_to_speech( request.text_to_speech, request.voice_id or "21m00Tcm4TlvDq8ikWAM" ) # Return the audio file as the "output" processing_time = time.time() - start_time logger.info(f"SUCCESS: TTS completed in {processing_time:.1f}s using {tts_method}") return audio_path, processing_time, True, f"{tts_method} (TTS-only mode)" else: raise HTTPException( status_code=503, detail="Video generation unavailable. OmniAvatar models not found. Only TTS from text is supported." ) # Original video generation logic (when models are available) # Determine audio source audio_path = None if request.text_to_speech: # Generate speech from text using TTS manager logger.info(f"Generating speech from text: {request.text_to_speech[:50]}...") audio_path, tts_method = await self.tts_manager.text_to_speech( request.text_to_speech, request.voice_id or "21m00Tcm4TlvDq8ikWAM" ) audio_generated = True elif request.audio_url: # Download audio from provided URL logger.info(f"Downloading audio from URL: {request.audio_url}") if not self.validate_audio_url(str(request.audio_url)): logger.warning(f"Audio URL may not be valid: {request.audio_url}") audio_path = await self.download_file(str(request.audio_url), ".mp3") tts_method = "External Audio URL" else: raise HTTPException( status_code=400, detail="Either text_to_speech or audio_url must be provided" ) # Download image if provided image_path = None if request.image_url: logger.info(f"Downloading image from URL: {request.image_url}") if not self.validate_image_url(str(request.image_url)): logger.warning(f"Image URL may not be valid: {request.image_url}") # Determine image extension from URL or default to .jpg parsed = urlparse(str(request.image_url)) ext = os.path.splitext(parsed.path)[1] or ".jpg" image_path = await self.download_file(str(request.image_url), ext) # Create temporary input file for inference with tempfile.NamedTemporaryFile(mode='w', suffix='.txt', delete=False) as f: if image_path: input_line = f"{request.prompt}@@{image_path}@@{audio_path}" else: input_line = f"{request.prompt}@@@@{audio_path}" f.write(input_line) temp_input_file = f.name # Prepare inference command cmd = [ "python", "-m", "torch.distributed.run", "--standalone", f"--nproc_per_node={request.sp_size}", "scripts/inference.py", "--config", "configs/inference.yaml", "--input_file", temp_input_file, "--guidance_scale", str(request.guidance_scale), "--audio_scale", str(request.audio_scale), "--num_steps", str(request.num_steps) ] if request.tea_cache_l1_thresh: cmd.extend(["--tea_cache_l1_thresh", str(request.tea_cache_l1_thresh)]) logger.info(f"Running inference with command: {' '.join(cmd)}") # Run inference result = subprocess.run(cmd, capture_output=True, text=True) # Clean up temporary files os.unlink(temp_input_file) os.unlink(audio_path) if image_path: os.unlink(image_path) if result.returncode != 0: logger.error(f"Inference failed: {result.stderr}") raise Exception(f"Inference failed: {result.stderr}") # Find output video file output_dir = "./outputs" if os.path.exists(output_dir): video_files = [f for f in os.listdir(output_dir) if f.endswith(('.mp4', '.avi'))] if video_files: # Return the most recent video file video_files.sort(key=lambda x: os.path.getmtime(os.path.join(output_dir, x)), reverse=True) output_path = os.path.join(output_dir, video_files[0]) processing_time = time.time() - start_time return output_path, processing_time, audio_generated, tts_method raise Exception("No output video generated") except Exception as e: # Clean up any temporary files in case of error try: if 'audio_path' in locals() and audio_path and os.path.exists(audio_path): os.unlink(audio_path) if 'image_path' in locals() and image_path and os.path.exists(image_path): os.unlink(image_path) if 'temp_input_file' in locals() and os.path.exists(temp_input_file): os.unlink(temp_input_file) except: pass logger.error(f"Generation error: {str(e)}") raise HTTPException(status_code=500, detail=str(e)) # Initialize API omni_api = OmniAvatarAPI() # Use FastAPI lifespan instead of deprecated on_event from contextlib import asynccontextmanager @asynccontextmanager async def lifespan(app: FastAPI): # Startup success = omni_api.load_model() if not success: logger.warning("WARNING: OmniAvatar model loading failed - running in limited mode") # Load TTS models try: await omni_api.tts_manager.load_models() logger.info("SUCCESS: TTS models initialization completed") except Exception as e: logger.error(f"ERROR: TTS initialization failed: {e}") yield # Shutdown (if needed) logger.info("Application shutting down...") # Create FastAPI app WITH lifespan parameter app = FastAPI( title="OmniAvatar-14B API with Advanced TTS", version="1.0.0", lifespan=lifespan ) # Add CORS middleware app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) # Mount static files for serving generated videos app.mount("/outputs", StaticFiles(directory="outputs"), name="outputs") @app.get("/health") async def health_check(): """Health check endpoint""" tts_info = omni_api.tts_manager.get_tts_info() return { "status": "healthy", "model_loaded": omni_api.model_loaded, "video_generation_available": omni_api.model_loaded, "tts_only_mode": not omni_api.model_loaded, "device": omni_api.device, "supports_text_to_speech": True, "supports_image_urls": omni_api.model_loaded, "supports_audio_urls": omni_api.model_loaded, "tts_system": "Advanced TTS with Robust Fallback", "advanced_tts_available": ADVANCED_TTS_AVAILABLE, "robust_tts_available": ROBUST_TTS_AVAILABLE, **tts_info } @app.get("/voices") async def get_voices(): """Get available voice configurations""" try: voices = await omni_api.tts_manager.get_available_voices() return {"voices": voices} except Exception as e: logger.error(f"Error getting voices: {e}") return {"error": str(e)} @app.post("/generate", response_model=GenerateResponse) async def generate_avatar(request: GenerateRequest): """Generate avatar video from prompt, text/audio, and optional image URL""" logger.info(f"Generating avatar with prompt: {request.prompt}") if request.text_to_speech: logger.info(f"Text to speech: {request.text_to_speech[:100]}...") logger.info(f"Voice ID: {request.voice_id}") if request.audio_url: logger.info(f"Audio URL: {request.audio_url}") if request.image_url: logger.info(f"Image URL: {request.image_url}") try: output_path, processing_time, audio_generated, tts_method = await omni_api.generate_avatar(request) return GenerateResponse( message="Generation completed successfully" + (" (TTS-only mode)" if not omni_api.model_loaded else ""), output_path=get_video_url(output_path) if omni_api.model_loaded else output_path, processing_time=processing_time, audio_generated=audio_generated, tts_method=tts_method ) except HTTPException: raise except Exception as e: logger.error(f"Unexpected error: {e}") raise HTTPException(status_code=500, detail=f"Unexpected error: {e}") # Enhanced Gradio interface def gradio_generate(prompt, text_to_speech, audio_url, image_url, voice_id, guidance_scale, audio_scale, num_steps): """Gradio interface wrapper with robust TTS support""" try: # Create request object request_data = { "prompt": prompt, "guidance_scale": guidance_scale, "audio_scale": audio_scale, "num_steps": int(num_steps) } # Add audio source if text_to_speech and text_to_speech.strip(): request_data["text_to_speech"] = text_to_speech request_data["voice_id"] = voice_id or "21m00Tcm4TlvDq8ikWAM" elif audio_url and audio_url.strip(): if omni_api.model_loaded: request_data["audio_url"] = audio_url else: return "Error: Audio URL input requires full OmniAvatar models. Please use text-to-speech instead." else: return "Error: Please provide either text to speech or audio URL" if image_url and image_url.strip(): if omni_api.model_loaded: request_data["image_url"] = image_url else: return "Error: Image URL input requires full OmniAvatar models for video generation." request = GenerateRequest(**request_data) # Run async function in sync context loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) output_path, processing_time, audio_generated, tts_method = loop.run_until_complete(omni_api.generate_avatar(request)) loop.close() success_message = f"SUCCESS: Generation completed in {processing_time:.1f}s using {tts_method}" print(success_message) if omni_api.model_loaded: return output_path else: return f"🎙️ TTS Audio generated successfully using {tts_method}\nFile: {output_path}\n\nWARNING: Video generation unavailable (OmniAvatar models not found)" except Exception as e: logger.error(f"Gradio generation error: {e}") return f"Error: {str(e)}" # Create Gradio interface mode_info = " (TTS-Only Mode)" if not omni_api.model_loaded else "" description_extra = """ WARNING: Running in TTS-Only Mode - OmniAvatar models not found. Only text-to-speech generation is available. To enable full video generation, the required model files need to be downloaded. """ if not omni_api.model_loaded else "" iface = gr.Interface( fn=gradio_generate, inputs=[ gr.Textbox( label="Prompt", placeholder="Describe the character behavior (e.g., 'A friendly person explaining a concept')", lines=2 ), gr.Textbox( label="Text to Speech", placeholder="Enter text to convert to speech", lines=3, info="Will use best available TTS system (Advanced or Fallback)" ), gr.Textbox( label="OR Audio URL", placeholder="https://example.com/audio.mp3", info="Direct URL to audio file (requires full models)" if not omni_api.model_loaded else "Direct URL to audio file" ), gr.Textbox( label="Image URL (Optional)", placeholder="https://example.com/image.jpg", info="Direct URL to reference image (requires full models)" if not omni_api.model_loaded else "Direct URL to reference image" ), gr.Dropdown( choices=[ "21m00Tcm4TlvDq8ikWAM", "pNInz6obpgDQGcFmaJgB", "EXAVITQu4vr4xnSDxMaL", "ErXwobaYiN019PkySvjV", "TxGEqnHWrfGW9XjX", "yoZ06aMxZJJ28mfd3POQ", "AZnzlk1XvdvUeBnXmlld" ], value="21m00Tcm4TlvDq8ikWAM", label="Voice Profile", info="Choose voice characteristics for TTS generation" ), gr.Slider(minimum=1, maximum=10, value=5.0, label="Guidance Scale", info="4-6 recommended"), gr.Slider(minimum=1, maximum=10, value=3.0, label="Audio Scale", info="Higher values = better lip-sync"), gr.Slider(minimum=10, maximum=100, value=30, step=1, label="Number of Steps", info="20-50 recommended") ], outputs=gr.Video(label="Generated Avatar Video") if omni_api.model_loaded else gr.Textbox(label="TTS Output"), title="[VIDEO] OmniAvatar-14B - Avatar Video Generation with Adaptive Body Animation", description=f""" Generate avatar videos with lip-sync from text prompts and speech using robust TTS system. {description_extra} **Robust TTS Architecture** - **Primary**: Advanced TTS (Facebook VITS & SpeechT5) if available - **Fallback**: Robust tone generation for 100% reliability - **Automatic**: Seamless switching between methods **Features:** - **Guaranteed Generation**: Always produces audio output - **No Dependencies**: Works even without advanced models - **High Availability**: Multiple fallback layers - **Voice Profiles**: Multiple voice characteristics - **Audio URL Support**: Use external audio files {"(full models required)" if not omni_api.model_loaded else ""} - **Image URL Support**: Reference images for characters {"(full models required)" if not omni_api.model_loaded else ""} **Usage:** 1. Enter a character description in the prompt 2. **Enter text for speech generation** (recommended in current mode) 3. {"Optionally add reference image/audio URLs (requires full models)" if not omni_api.model_loaded else "Optionally add reference image URL and choose audio source"} 4. Choose voice profile and adjust parameters 5. Generate your {"audio" if not omni_api.model_loaded else "avatar video"}! """, examples=[ [ "A professional teacher explaining a mathematical concept with clear gestures", "Hello students! Today we're going to learn about calculus and derivatives.", "", "", "21m00Tcm4TlvDq8ikWAM", 5.0, 3.5, 30 ], [ "A friendly presenter speaking confidently to an audience", "Welcome everyone to our presentation on artificial intelligence!", "", "", "pNInz6obpgDQGcFmaJgB", 5.5, 4.0, 35 ] ], allow_flagging="never", flagging_dir="/tmp/gradio_flagged" ) # Mount Gradio app app = gr.mount_gradio_app(app, iface, path="/gradio") if __name__ == "__main__": import uvicorn uvicorn.run(app, host="0.0.0.0", port=7860)