Spaces:
Sleeping
Sleeping
File size: 4,841 Bytes
bccf6a9 028fa1b bccf6a9 bb10c2b fa999ed f2b506b 5bf77c5 cd3c12d f2b506b dc35a57 bb10c2b bccf6a9 028fa1b bccf6a9 e12754a 7457dcf d34d00a f2b506b bb10c2b bccf6a9 bb10c2b 99c26e2 bccf6a9 ffd0df2 bccf6a9 398ef2b bccf6a9 028fa1b bccf6a9 028fa1b bccf6a9 e12754a bccf6a9 028fa1b bccf6a9 398ef2b d34d00a bccf6a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
import gradio as gr
import os
hf_token = os.environ.get("HF_TOKEN")
import spaces
from diffusers import DiffusionPipeline
from huggingface_hub import snapshot_download
import torch
import os, sys
import time
class Dummy():
pass
pipeline_path = snapshot_download(repo_id='briaai/BRIA-2.3-T5')
sys.path.append(pipeline_path)
from ella_xl_pipeline import EllaXLPipeline
resolutions = ["1024 1024","1280 768","1344 768","768 1344","768 1280"]
# Ng
default_negative_prompt= "Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers"
# Load pipeline
pipe = DiffusionPipeline.from_pretrained("briaai/BRIA-2.3", torch_dtype=torch.float16, use_safetensors=True)
pipe.load_lora_weights(f'{pipeline_path}/pytorch_lora_weights.safetensors')
pipe.fuse_lora()
pipe.unload_lora_weights()
pipe.force_zeros_for_empty_prompt = False
pipe.to("cuda")
pipe = EllaXLPipeline(pipe,f'{pipeline_path}/pytorch_model.bin')
# def tocuda():
# pipe.pipe.vae.to('cuda')
# pipe.t5_encoder.to('cuda')
# pipe.pipe.unet.unet.to('cuda')
# pipe.pipe.unet.ella.to('cuda')
# print("Optimizing BRIA-2.3-T5 - this could take a while")
# t=time.time()
# pipe.unet = torch.compile(
# pipe.unet, mode="reduce-overhead", fullgraph=True # 600 secs compilation
# )
# with torch.no_grad():
# outputs = pipe(
# prompt="an apple",
# num_inference_steps=30,
# )
# # This will avoid future compilations on different shapes
# unet_compiled = torch._dynamo.run(pipe.unet)
# unet_compiled.config=pipe.unet.config
# unet_compiled.add_embedding = Dummy()
# unet_compiled.add_embedding.linear_1 = Dummy()
# unet_compiled.add_embedding.linear_1.in_features = pipe.unet.add_embedding.linear_1.in_features
# pipe.unet = unet_compiled
# print(f"Optimizing finished successfully after {time.time()-t} secs")
@spaces.GPU(enable_queue=True)
def infer(prompt,negative_prompt,seed,resolution, steps):
# if 'cuda' not in pipe.pipe.device.type:
# tocuda()
print(f"""
—/n
{prompt}
""")
t=time.time()
if seed=="-1":
generator=None
else:
try:
seed=int(seed)
generator = torch.Generator("cuda").manual_seed(seed)
except:
generator=None
try:
steps=int(steps)
except:
raise Exception('Steps must be an integer')
w,h = resolution.split()
w,h = int(w),int(h)
image = pipe(prompt,num_inference_steps=steps, negative_prompt=negative_prompt,generator=generator,width=w,height=h).images[0]
print(f'gen time is {time.time()-t} secs')
# Future
# Add amound of steps
# if nsfw:
# raise gr.Error("Generated image is NSFW")
return image
css = """
#col-container{
margin: 0 auto;
max-width: 580px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("## BRIA 2.3 T5")
gr.HTML('''
<p style="margin-bottom: 10px; font-size: 94%">
This is a demo for
<a href="https://huggingface.co/briaai/BRIA-2.3-T5" target="_blank">BRIA 2.3 T5 text-to-image </a>.
</p>
''')
with gr.Group():
with gr.Column():
prompt_in = gr.Textbox(label="Prompt", value="A smiling man with wavy brown hair and a trimmed beard")
resolution = gr.Dropdown(value=resolutions[0], show_label=True, label="Resolution", choices=resolutions)
seed = gr.Textbox(label="Seed", value=-1)
steps = gr.Textbox(label="Steps", value=30)
negative_prompt = gr.Textbox(label="Negative Prompt", value=default_negative_prompt)
submit_btn = gr.Button("Generate")
result = gr.Image(label="BRIA-2.3-T5 Result")
# gr.Examples(
# examples = [
# "Dragon, digital art, by Greg Rutkowski",
# "Armored knight holding sword",
# "A flat roof villa near a river with black walls and huge windows",
# "A calm and peaceful office",
# "Pirate guinea pig"
# ],
# fn = infer,
# inputs = [
# prompt_in
# ],
# outputs = [
# result
# ]
# )
submit_btn.click(
fn = infer,
inputs = [
prompt_in,
negative_prompt,
seed,
resolution,
steps,
],
outputs = [
result
]
)
demo.queue().launch(show_api=False) |