File size: 4,899 Bytes
884e760
6c74fa1
2d8c11a
6c74fa1
6a1229b
 
 
2d8c11a
 
a8c40e7
2d8c11a
ca9ec31
2d8c11a
 
75bed3a
 
 
 
 
 
 
2d8c11a
c060c17
ff363f9
 
6a1229b
26f3cbb
 
2d8c11a
 
26f3cbb
 
2d8c11a
 
 
94d83be
2d8c11a
 
6c74fa1
 
a8c40e7
6529799
a8c40e7
 
6a1229b
bb3e741
6a1229b
2d8c11a
6c74fa1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcbf369
47009ed
 
c0ddebd
 
 
 
47009ed
1318a4b
eaaba91
1318a4b
eaaba91
1318a4b
dcbf369
 
6c74fa1
 
 
 
 
 
bfd8dab
6c74fa1
 
26f3cbb
6c74fa1
 
45299c9
6c74fa1
2d8c11a
9e2e30b
 
 
2d8c11a
 
eaaba91
2d8c11a
45299c9
a8c40e7
6c74fa1
 
 
 
 
 
 
 
 
 
45299c9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import gradio as gr
import numpy as np

import os
from PIL import Image
import requests
from io import BytesIO
import io
import base64
from loadimg import load_img

hf_token = os.environ.get("HF_TOKEN_API_DEMO") # we get it from a secret env variable, such that it's private
auth_headers = {"api_token": hf_token}

def convert_image_to_base64_string(img):
    buffer = io.BytesIO()
    img.save(buffer, format="PNG")  # You can choose the format (e.g., "JPEG", "PNG")
    # Encode the buffer in base64
    image_base64_string = base64.b64encode(buffer.getvalue()).decode('utf-8')
    return f",{image_base64_string}"
    
def download_image(url):
    response = requests.get(url)
    img_bytes = BytesIO(response.content)
    return Image.open(img_bytes).convert("RGB")

def api_call(image_base64_file):
    url = "https://engine.prod.bria-api.com/v1/tailored-gen/restyle_portrait"
    
    payload = {
    "id_image_file": image_base64_file,
    "tailored_model_id": 598,
    }
    response = requests.post(url, json=payload, headers=auth_headers)
    response = response.json()
    res_image = download_image(response["image_res"])
    
    return res_image


def predict(img_input):
    img = load_img(img_input)
    img = img.convert("RGB")  
    image_base64_file = convert_image_to_base64_string(img)
    
    gen_img = api_call(image_base64_file)
    
    return gen_img


css = '''
.gradio-container{max-width: 1100px !important}
#image_upload{min-height:400px}
#image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 400px}
#mask_radio .gr-form{background:transparent; border: none}
#word_mask{margin-top: .75em !important}
#word_mask textarea:disabled{opacity: 0.3}
.footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5}
.footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white}
.dark .footer {border-color: #303030}
.dark .footer>p {background: #0b0f19}
.acknowledgments h4{margin: 1.25em 0 .25em 0;font-weight: bold;font-size: 115%}
#image_upload .touch-none{display: flex}
@keyframes spin {
    from {
        transform: rotate(0deg);
    }
    to {
        transform: rotate(360deg);
    }
}
#share-btn-container {padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; max-width: 13rem; margin-left: auto;}
div#share-btn-container > div {flex-direction: row;background: black;align-items: center}
#share-btn-container:hover {background-color: #060606}
#share-btn {all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.5rem !important; padding-bottom: 0.5rem !important;right:0;}
#share-btn * {all: unset}
#share-btn-container div:nth-child(-n+2){width: auto !important;min-height: 0px !important;}
#share-btn-container .wrap {display: none !important}
#share-btn-container.hidden {display: none!important}
#prompt input{width: calc(100% - 160px);border-top-right-radius: 0px;border-bottom-right-radius: 0px;}
#run_button {
    width: 100%;
    height: 50px;  /* Set a fixed height for the button */
    display: flex;
    align-items: center;
    justify-content: center;
}
#output-img img, #image_upload img {
    object-fit: contain; /* Ensure aspect ratio is preserved */
    width: 100%;
    height: auto; /* Let height adjust automatically */
}
#prompt-container{margin-top:-18px;}
#prompt-container .form{border-top-left-radius: 0;border-top-right-radius: 0}
#image_upload{border-bottom-left-radius: 0px;border-bottom-right-radius: 0px}
'''

image_blocks = gr.Blocks(css=css, elem_id="total-container")
with image_blocks as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("## BRIA Restyle Portrait API")
        gr.HTML('''
          <p style="margin-bottom: 10px; font-size: 94%">
            This demo showcases the BRIA Tailored Portrait capability
          </p>
        ''')

    with gr.Row():
        with gr.Column():
            image = gr.Image(label="Upload an image")
            with gr.Column():
                btn = gr.Button("Restyle!", elem_id="run_button")
        
        with gr.Column():
            image_out = gr.Image(label="Output", elem_id="output-img")

    # Button click will trigger the inpainting function (now with prompt included)
    btn.click(fn=predict, inputs=image, outputs=[image_out], api_name='run')

    gr.HTML(
        """
            <div class="footer">
                <p>Model by <a href="https://huggingface.co/diffusers" style="text-decoration: underline;" target="_blank">Diffusers</a> - Gradio Demo by 🤗 Hugging Face
                </p>
            </div>
        """
    )

image_blocks.queue(max_size=25, api_open=False).launch(show_api=False)