Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import numpy as np | |
| import os | |
| from PIL import Image | |
| import requests | |
| from io import BytesIO | |
| import io | |
| import base64 | |
| from loadimg import load_img | |
| hf_token = os.environ.get("HF_TOKEN_API_DEMO") # we get it from a secret env variable, such that it's private | |
| auth_headers = {"api_token": hf_token} | |
| def convert_image_to_base64_string(img): | |
| buffer = io.BytesIO() | |
| img.save(buffer, format="PNG") # You can choose the format (e.g., "JPEG", "PNG") | |
| # Encode the buffer in base64 | |
| image_base64_string = base64.b64encode(buffer.getvalue()).decode('utf-8') | |
| return f",{image_base64_string}" | |
| def download_image(url): | |
| response = requests.get(url) | |
| img_bytes = BytesIO(response.content) | |
| return Image.open(img_bytes).convert("RGB") | |
| def api_call(image_base64_file): | |
| url = "https://engine.prod.bria-api.com/v1/tailored-gen/restyle_portrait" | |
| payload = { | |
| "id_image_file": image_base64_file, | |
| "tailored_model_id": 11311 | |
| } | |
| response = requests.post(url, json=payload, headers=auth_headers) | |
| response = response.json() | |
| res_image = download_image(response["image_res"]) | |
| return res_image | |
| def predict(img_input): | |
| img = load_img(img_input) | |
| img = img.convert("RGB") | |
| image_base64_file = convert_image_to_base64_string(img) | |
| gen_img = api_call(image_base64_file) | |
| return gen_img | |
| css = ''' | |
| .gradio-container{max-width: 1100px !important} | |
| #image_upload{min-height:400px} | |
| #image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 400px} | |
| #mask_radio .gr-form{background:transparent; border: none} | |
| #word_mask{margin-top: .75em !important} | |
| #word_mask textarea:disabled{opacity: 0.3} | |
| .footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5} | |
| .footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white} | |
| .dark .footer {border-color: #303030} | |
| .dark .footer>p {background: #0b0f19} | |
| .acknowledgments h4{margin: 1.25em 0 .25em 0;font-weight: bold;font-size: 115%} | |
| #image_upload .touch-none{display: flex} | |
| @keyframes spin { | |
| from { | |
| transform: rotate(0deg); | |
| } | |
| to { | |
| transform: rotate(360deg); | |
| } | |
| } | |
| #share-btn-container {padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; max-width: 13rem; margin-left: auto;} | |
| div#share-btn-container > div {flex-direction: row;background: black;align-items: center} | |
| #share-btn-container:hover {background-color: #060606} | |
| #share-btn {all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.5rem !important; padding-bottom: 0.5rem !important;right:0;} | |
| #share-btn * {all: unset} | |
| #share-btn-container div:nth-child(-n+2){width: auto !important;min-height: 0px !important;} | |
| #share-btn-container .wrap {display: none !important} | |
| #share-btn-container.hidden {display: none!important} | |
| #prompt input{width: calc(100% - 160px);border-top-right-radius: 0px;border-bottom-right-radius: 0px;} | |
| #run_button { | |
| width: 100%; | |
| height: 50px; /* Set a fixed height for the button */ | |
| display: flex; | |
| align-items: center; | |
| justify-content: center; | |
| } | |
| #output-img img, #image_upload img { | |
| object-fit: contain; /* Ensure aspect ratio is preserved */ | |
| width: 100%; | |
| height: auto; /* Let height adjust automatically */ | |
| } | |
| #prompt-container{margin-top:-18px;} | |
| #prompt-container .form{border-top-left-radius: 0;border-top-right-radius: 0} | |
| #image_upload{border-bottom-left-radius: 0px;border-bottom-right-radius: 0px} | |
| ''' | |
| image_blocks = gr.Blocks(css=css, elem_id="total-container") | |
| with image_blocks as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown("## BRIA Restyle Portrait API") | |
| gr.HTML(''' | |
| <p style="margin-bottom: 10px; font-size: 94%"> | |
| This demo showcases the BRIA Restyle Portrait capability, which lets you transform the style of a portrait while preserving the person's facial features using a tailored model and a reference image.<br> ComfyUI Node is available <a href=https://github.com/Bria-AI/ComfyUI-BRIA-API/tree/main?tab=readme-ov-file#tailored-generation-nodes>here</a> | |
| </p> | |
| ''') | |
| with gr.Row(): | |
| with gr.Column(): | |
| image = gr.Image(label="Upload an image") | |
| with gr.Column(): | |
| btn = gr.Button("Restyle!", elem_id="run_button") | |
| with gr.Column(): | |
| image_out = gr.Image(label="Output", elem_id="output-img") | |
| # Button click will trigger the inpainting function (now with prompt included) | |
| btn.click(fn=predict, inputs=image, outputs=[image_out], api_name='run') | |
| gr.HTML( | |
| """ | |
| <div class="footer"> | |
| <p>Model by <a href="https://huggingface.co/diffusers" style="text-decoration: underline;" target="_blank">Diffusers</a> - Gradio Demo by 🤗 Hugging Face | |
| </p> | |
| </div> | |
| """ | |
| ) | |
| image_blocks.queue(max_size=25, api_open=False).launch(show_api=False) |