Spaces:
				
			
			
	
			
			
					
		Running
		
	
	
	
			
			
	
	
	
	
		
		
					
		Running
		
	Upload 4 files
Browse files- config.json +58 -0
- controlnet.py +871 -0
- image_processor.py +991 -0
- pipeline_controlnet_sd_xl.py +1465 -0
    	
        config.json
    ADDED
    
    | @@ -0,0 +1,58 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
             | 
| 2 | 
            +
            {
         | 
| 3 | 
            +
              "_class_name": "ControlNetModel",
         | 
| 4 | 
            +
              "_diffusers_version": "0.20.0.dev0",
         | 
| 5 | 
            +
              "_name_or_path": "../controlnet-1-0-inpainting/checkpoint-20000/controlnet",
         | 
| 6 | 
            +
              "act_fn": "silu",
         | 
| 7 | 
            +
              "addition_embed_type": "text_time",
         | 
| 8 | 
            +
              "addition_embed_type_num_heads": 64,
         | 
| 9 | 
            +
              "addition_time_embed_dim": 256,
         | 
| 10 | 
            +
              "attention_head_dim": [
         | 
| 11 | 
            +
                5,
         | 
| 12 | 
            +
                10,
         | 
| 13 | 
            +
                20
         | 
| 14 | 
            +
              ],
         | 
| 15 | 
            +
              "block_out_channels": [
         | 
| 16 | 
            +
                320,
         | 
| 17 | 
            +
                640,
         | 
| 18 | 
            +
                1280
         | 
| 19 | 
            +
              ],
         | 
| 20 | 
            +
              "class_embed_type": null,
         | 
| 21 | 
            +
              "conditioning_channels": 5,
         | 
| 22 | 
            +
              "conditioning_embedding_out_channels": [
         | 
| 23 | 
            +
                16,
         | 
| 24 | 
            +
                32,
         | 
| 25 | 
            +
                96,
         | 
| 26 | 
            +
                256
         | 
| 27 | 
            +
              ],
         | 
| 28 | 
            +
              "controlnet_conditioning_channel_order": "rgb",
         | 
| 29 | 
            +
              "cross_attention_dim": 2048,
         | 
| 30 | 
            +
              "down_block_types": [
         | 
| 31 | 
            +
                "DownBlock2D",
         | 
| 32 | 
            +
                "CrossAttnDownBlock2D",
         | 
| 33 | 
            +
                "CrossAttnDownBlock2D"
         | 
| 34 | 
            +
              ],
         | 
| 35 | 
            +
              "downsample_padding": 1,
         | 
| 36 | 
            +
              "encoder_hid_dim": null,
         | 
| 37 | 
            +
              "encoder_hid_dim_type": null,
         | 
| 38 | 
            +
              "flip_sin_to_cos": true,
         | 
| 39 | 
            +
              "freq_shift": 0,
         | 
| 40 | 
            +
              "global_pool_conditions": false,
         | 
| 41 | 
            +
              "in_channels": 4,
         | 
| 42 | 
            +
              "layers_per_block": 2,
         | 
| 43 | 
            +
              "mid_block_scale_factor": 1,
         | 
| 44 | 
            +
              "norm_eps": 1e-05,
         | 
| 45 | 
            +
              "norm_num_groups": 32,
         | 
| 46 | 
            +
              "num_attention_heads": null,
         | 
| 47 | 
            +
              "num_class_embeds": null,
         | 
| 48 | 
            +
              "only_cross_attention": false,
         | 
| 49 | 
            +
              "projection_class_embeddings_input_dim": 2816,
         | 
| 50 | 
            +
              "resnet_time_scale_shift": "default",
         | 
| 51 | 
            +
              "transformer_layers_per_block": [
         | 
| 52 | 
            +
                1,
         | 
| 53 | 
            +
                2,
         | 
| 54 | 
            +
                10
         | 
| 55 | 
            +
              ],
         | 
| 56 | 
            +
              "upcast_attention": null,
         | 
| 57 | 
            +
              "use_linear_projection": true
         | 
| 58 | 
            +
            }
         | 
    	
        controlnet.py
    ADDED
    
    | @@ -0,0 +1,871 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright 2024 The HuggingFace Team. All rights reserved.
         | 
| 2 | 
            +
            #
         | 
| 3 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 4 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 5 | 
            +
            # You may obtain a copy of the License at
         | 
| 6 | 
            +
            #
         | 
| 7 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 10 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 11 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 12 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 13 | 
            +
            # limitations under the License.
         | 
| 14 | 
            +
            from dataclasses import dataclass
         | 
| 15 | 
            +
            from typing import Any, Dict, List, Optional, Tuple, Union
         | 
| 16 | 
            +
             | 
| 17 | 
            +
            import torch
         | 
| 18 | 
            +
            from torch import nn
         | 
| 19 | 
            +
            from torch.nn import functional as F
         | 
| 20 | 
            +
             | 
| 21 | 
            +
            from diffusers.configuration_utils import ConfigMixin, register_to_config
         | 
| 22 | 
            +
            from diffusers.loaders.controlnet import FromOriginalControlNetMixin
         | 
| 23 | 
            +
            from diffusers.utils import BaseOutput, logging
         | 
| 24 | 
            +
            from diffusers.models.attention_processor import (
         | 
| 25 | 
            +
                ADDED_KV_ATTENTION_PROCESSORS,
         | 
| 26 | 
            +
                CROSS_ATTENTION_PROCESSORS,
         | 
| 27 | 
            +
                AttentionProcessor,
         | 
| 28 | 
            +
                AttnAddedKVProcessor,
         | 
| 29 | 
            +
                AttnProcessor,
         | 
| 30 | 
            +
            )
         | 
| 31 | 
            +
            from diffusers.models.embeddings import TextImageProjection, TextImageTimeEmbedding, TextTimeEmbedding, TimestepEmbedding, Timesteps
         | 
| 32 | 
            +
            from diffusers.models.modeling_utils import ModelMixin
         | 
| 33 | 
            +
            from diffusers.models.unets.unet_2d_blocks import (
         | 
| 34 | 
            +
                CrossAttnDownBlock2D,
         | 
| 35 | 
            +
                DownBlock2D,
         | 
| 36 | 
            +
                UNetMidBlock2D,
         | 
| 37 | 
            +
                UNetMidBlock2DCrossAttn,
         | 
| 38 | 
            +
                get_down_block,
         | 
| 39 | 
            +
            )
         | 
| 40 | 
            +
            from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
         | 
| 41 | 
            +
             | 
| 42 | 
            +
             | 
| 43 | 
            +
            logger = logging.get_logger(__name__)  # pylint: disable=invalid-name
         | 
| 44 | 
            +
             | 
| 45 | 
            +
             | 
| 46 | 
            +
            @dataclass
         | 
| 47 | 
            +
            class ControlNetOutput(BaseOutput):
         | 
| 48 | 
            +
                """
         | 
| 49 | 
            +
                The output of [`ControlNetModel`].
         | 
| 50 | 
            +
             | 
| 51 | 
            +
                Args:
         | 
| 52 | 
            +
                    down_block_res_samples (`tuple[torch.Tensor]`):
         | 
| 53 | 
            +
                        A tuple of downsample activations at different resolutions for each downsampling block. Each tensor should
         | 
| 54 | 
            +
                        be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be
         | 
| 55 | 
            +
                        used to condition the original UNet's downsampling activations.
         | 
| 56 | 
            +
                    mid_down_block_re_sample (`torch.Tensor`):
         | 
| 57 | 
            +
                        The activation of the midde block (the lowest sample resolution). Each tensor should be of shape
         | 
| 58 | 
            +
                        `(batch_size, channel * lowest_resolution, height // lowest_resolution, width // lowest_resolution)`.
         | 
| 59 | 
            +
                        Output can be used to condition the original UNet's middle block activation.
         | 
| 60 | 
            +
                """
         | 
| 61 | 
            +
             | 
| 62 | 
            +
                down_block_res_samples: Tuple[torch.Tensor]
         | 
| 63 | 
            +
                mid_block_res_sample: torch.Tensor
         | 
| 64 | 
            +
             | 
| 65 | 
            +
             | 
| 66 | 
            +
            class ControlNetConditioningEmbedding(nn.Module):
         | 
| 67 | 
            +
                """
         | 
| 68 | 
            +
                Quoting from https://arxiv.org/abs/2302.05543: "Stable Diffusion uses a pre-processing method similar to VQ-GAN
         | 
| 69 | 
            +
                [11] to convert the entire dataset of 512 × 512 images into smaller 64 × 64 “latent images” for stabilized
         | 
| 70 | 
            +
                training. This requires ControlNets to convert image-based conditions to 64 × 64 feature space to match the
         | 
| 71 | 
            +
                convolution size. We use a tiny network E(·) of four convolution layers with 4 × 4 kernels and 2 × 2 strides
         | 
| 72 | 
            +
                (activated by ReLU, channels are 16, 32, 64, 128, initialized with Gaussian weights, trained jointly with the full
         | 
| 73 | 
            +
                model) to encode image-space conditions ... into feature maps ..."
         | 
| 74 | 
            +
                """
         | 
| 75 | 
            +
             | 
| 76 | 
            +
                def __init__(
         | 
| 77 | 
            +
                    self,
         | 
| 78 | 
            +
                    conditioning_embedding_channels: int,
         | 
| 79 | 
            +
                    conditioning_channels: int = 5, #update to 5
         | 
| 80 | 
            +
                    block_out_channels: Tuple[int, ...] = (16, 32, 96, 256),
         | 
| 81 | 
            +
                ):
         | 
| 82 | 
            +
                    super().__init__()
         | 
| 83 | 
            +
             | 
| 84 | 
            +
                    self.conv_in = nn.Conv2d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1)
         | 
| 85 | 
            +
             | 
| 86 | 
            +
                    self.blocks = nn.ModuleList([])
         | 
| 87 | 
            +
             | 
| 88 | 
            +
                    for i in range(len(block_out_channels) - 1):
         | 
| 89 | 
            +
                        channel_in = block_out_channels[i]
         | 
| 90 | 
            +
                        channel_out = block_out_channels[i + 1]
         | 
| 91 | 
            +
                        self.blocks.append(nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1))
         | 
| 92 | 
            +
                        self.blocks.append(nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=1)) # update to 1
         | 
| 93 | 
            +
             | 
| 94 | 
            +
                    self.conv_out = zero_module(
         | 
| 95 | 
            +
                        nn.Conv2d(block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1)
         | 
| 96 | 
            +
                    )
         | 
| 97 | 
            +
             | 
| 98 | 
            +
                def forward(self, conditioning):
         | 
| 99 | 
            +
                    embedding = self.conv_in(conditioning)
         | 
| 100 | 
            +
                    embedding = F.silu(embedding)
         | 
| 101 | 
            +
             | 
| 102 | 
            +
                    for block in self.blocks:
         | 
| 103 | 
            +
                        embedding = block(embedding)
         | 
| 104 | 
            +
                        embedding = F.silu(embedding)
         | 
| 105 | 
            +
             | 
| 106 | 
            +
                    embedding = self.conv_out(embedding)
         | 
| 107 | 
            +
             | 
| 108 | 
            +
                    return embedding
         | 
| 109 | 
            +
             | 
| 110 | 
            +
             | 
| 111 | 
            +
            class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlNetMixin):
         | 
| 112 | 
            +
                """
         | 
| 113 | 
            +
                A ControlNet model.
         | 
| 114 | 
            +
             | 
| 115 | 
            +
                Args:
         | 
| 116 | 
            +
                    in_channels (`int`, defaults to 4):
         | 
| 117 | 
            +
                        The number of channels in the input sample.
         | 
| 118 | 
            +
                    flip_sin_to_cos (`bool`, defaults to `True`):
         | 
| 119 | 
            +
                        Whether to flip the sin to cos in the time embedding.
         | 
| 120 | 
            +
                    freq_shift (`int`, defaults to 0):
         | 
| 121 | 
            +
                        The frequency shift to apply to the time embedding.
         | 
| 122 | 
            +
                    down_block_types (`tuple[str]`, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
         | 
| 123 | 
            +
                        The tuple of downsample blocks to use.
         | 
| 124 | 
            +
                    only_cross_attention (`Union[bool, Tuple[bool]]`, defaults to `False`):
         | 
| 125 | 
            +
                    block_out_channels (`tuple[int]`, defaults to `(320, 640, 1280, 1280)`):
         | 
| 126 | 
            +
                        The tuple of output channels for each block.
         | 
| 127 | 
            +
                    layers_per_block (`int`, defaults to 2):
         | 
| 128 | 
            +
                        The number of layers per block.
         | 
| 129 | 
            +
                    downsample_padding (`int`, defaults to 1):
         | 
| 130 | 
            +
                        The padding to use for the downsampling convolution.
         | 
| 131 | 
            +
                    mid_block_scale_factor (`float`, defaults to 1):
         | 
| 132 | 
            +
                        The scale factor to use for the mid block.
         | 
| 133 | 
            +
                    act_fn (`str`, defaults to "silu"):
         | 
| 134 | 
            +
                        The activation function to use.
         | 
| 135 | 
            +
                    norm_num_groups (`int`, *optional*, defaults to 32):
         | 
| 136 | 
            +
                        The number of groups to use for the normalization. If None, normalization and activation layers is skipped
         | 
| 137 | 
            +
                        in post-processing.
         | 
| 138 | 
            +
                    norm_eps (`float`, defaults to 1e-5):
         | 
| 139 | 
            +
                        The epsilon to use for the normalization.
         | 
| 140 | 
            +
                    cross_attention_dim (`int`, defaults to 1280):
         | 
| 141 | 
            +
                        The dimension of the cross attention features.
         | 
| 142 | 
            +
                    transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
         | 
| 143 | 
            +
                        The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
         | 
| 144 | 
            +
                        [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
         | 
| 145 | 
            +
                        [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
         | 
| 146 | 
            +
                    encoder_hid_dim (`int`, *optional*, defaults to None):
         | 
| 147 | 
            +
                        If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
         | 
| 148 | 
            +
                        dimension to `cross_attention_dim`.
         | 
| 149 | 
            +
                    encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
         | 
| 150 | 
            +
                        If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
         | 
| 151 | 
            +
                        embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
         | 
| 152 | 
            +
                    attention_head_dim (`Union[int, Tuple[int]]`, defaults to 8):
         | 
| 153 | 
            +
                        The dimension of the attention heads.
         | 
| 154 | 
            +
                    use_linear_projection (`bool`, defaults to `False`):
         | 
| 155 | 
            +
                    class_embed_type (`str`, *optional*, defaults to `None`):
         | 
| 156 | 
            +
                        The type of class embedding to use which is ultimately summed with the time embeddings. Choose from None,
         | 
| 157 | 
            +
                        `"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
         | 
| 158 | 
            +
                    addition_embed_type (`str`, *optional*, defaults to `None`):
         | 
| 159 | 
            +
                        Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
         | 
| 160 | 
            +
                        "text". "text" will use the `TextTimeEmbedding` layer.
         | 
| 161 | 
            +
                    num_class_embeds (`int`, *optional*, defaults to 0):
         | 
| 162 | 
            +
                        Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
         | 
| 163 | 
            +
                        class conditioning with `class_embed_type` equal to `None`.
         | 
| 164 | 
            +
                    upcast_attention (`bool`, defaults to `False`):
         | 
| 165 | 
            +
                    resnet_time_scale_shift (`str`, defaults to `"default"`):
         | 
| 166 | 
            +
                        Time scale shift config for ResNet blocks (see `ResnetBlock2D`). Choose from `default` or `scale_shift`.
         | 
| 167 | 
            +
                    projection_class_embeddings_input_dim (`int`, *optional*, defaults to `None`):
         | 
| 168 | 
            +
                        The dimension of the `class_labels` input when `class_embed_type="projection"`. Required when
         | 
| 169 | 
            +
                        `class_embed_type="projection"`.
         | 
| 170 | 
            +
                    controlnet_conditioning_channel_order (`str`, defaults to `"rgb"`):
         | 
| 171 | 
            +
                        The channel order of conditional image. Will convert to `rgb` if it's `bgr`.
         | 
| 172 | 
            +
                    conditioning_embedding_out_channels (`tuple[int]`, *optional*, defaults to `(16, 32, 96, 256)`):
         | 
| 173 | 
            +
                        The tuple of output channel for each block in the `conditioning_embedding` layer.
         | 
| 174 | 
            +
                    global_pool_conditions (`bool`, defaults to `False`):
         | 
| 175 | 
            +
                        TODO(Patrick) - unused parameter.
         | 
| 176 | 
            +
                    addition_embed_type_num_heads (`int`, defaults to 64):
         | 
| 177 | 
            +
                        The number of heads to use for the `TextTimeEmbedding` layer.
         | 
| 178 | 
            +
                """
         | 
| 179 | 
            +
             | 
| 180 | 
            +
                _supports_gradient_checkpointing = True
         | 
| 181 | 
            +
             | 
| 182 | 
            +
                @register_to_config
         | 
| 183 | 
            +
                def __init__(
         | 
| 184 | 
            +
                    self,
         | 
| 185 | 
            +
                    in_channels: int = 4,
         | 
| 186 | 
            +
                    conditioning_channels: int = 3,
         | 
| 187 | 
            +
                    flip_sin_to_cos: bool = True,
         | 
| 188 | 
            +
                    freq_shift: int = 0,
         | 
| 189 | 
            +
                    down_block_types: Tuple[str, ...] = (
         | 
| 190 | 
            +
                        "CrossAttnDownBlock2D",
         | 
| 191 | 
            +
                        "CrossAttnDownBlock2D",
         | 
| 192 | 
            +
                        "CrossAttnDownBlock2D",
         | 
| 193 | 
            +
                        "DownBlock2D",
         | 
| 194 | 
            +
                    ),
         | 
| 195 | 
            +
                    mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
         | 
| 196 | 
            +
                    only_cross_attention: Union[bool, Tuple[bool]] = False,
         | 
| 197 | 
            +
                    block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280),
         | 
| 198 | 
            +
                    layers_per_block: int = 2,
         | 
| 199 | 
            +
                    downsample_padding: int = 1,
         | 
| 200 | 
            +
                    mid_block_scale_factor: float = 1,
         | 
| 201 | 
            +
                    act_fn: str = "silu",
         | 
| 202 | 
            +
                    norm_num_groups: Optional[int] = 32,
         | 
| 203 | 
            +
                    norm_eps: float = 1e-5,
         | 
| 204 | 
            +
                    cross_attention_dim: int = 1280,
         | 
| 205 | 
            +
                    transformer_layers_per_block: Union[int, Tuple[int, ...]] = 1,
         | 
| 206 | 
            +
                    encoder_hid_dim: Optional[int] = None,
         | 
| 207 | 
            +
                    encoder_hid_dim_type: Optional[str] = None,
         | 
| 208 | 
            +
                    attention_head_dim: Union[int, Tuple[int, ...]] = 8,
         | 
| 209 | 
            +
                    num_attention_heads: Optional[Union[int, Tuple[int, ...]]] = None,
         | 
| 210 | 
            +
                    use_linear_projection: bool = False,
         | 
| 211 | 
            +
                    class_embed_type: Optional[str] = None,
         | 
| 212 | 
            +
                    addition_embed_type: Optional[str] = None,
         | 
| 213 | 
            +
                    addition_time_embed_dim: Optional[int] = None,
         | 
| 214 | 
            +
                    num_class_embeds: Optional[int] = None,
         | 
| 215 | 
            +
                    upcast_attention: bool = False,
         | 
| 216 | 
            +
                    resnet_time_scale_shift: str = "default",
         | 
| 217 | 
            +
                    projection_class_embeddings_input_dim: Optional[int] = None,
         | 
| 218 | 
            +
                    controlnet_conditioning_channel_order: str = "rgb",
         | 
| 219 | 
            +
                    conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256),
         | 
| 220 | 
            +
                    global_pool_conditions: bool = False,
         | 
| 221 | 
            +
                    addition_embed_type_num_heads: int = 64,
         | 
| 222 | 
            +
                ):
         | 
| 223 | 
            +
                    super().__init__()
         | 
| 224 | 
            +
             | 
| 225 | 
            +
                    # If `num_attention_heads` is not defined (which is the case for most models)
         | 
| 226 | 
            +
                    # it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
         | 
| 227 | 
            +
                    # The reason for this behavior is to correct for incorrectly named variables that were introduced
         | 
| 228 | 
            +
                    # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
         | 
| 229 | 
            +
                    # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
         | 
| 230 | 
            +
                    # which is why we correct for the naming here.
         | 
| 231 | 
            +
                    num_attention_heads = num_attention_heads or attention_head_dim
         | 
| 232 | 
            +
             | 
| 233 | 
            +
                    # Check inputs
         | 
| 234 | 
            +
                    if len(block_out_channels) != len(down_block_types):
         | 
| 235 | 
            +
                        raise ValueError(
         | 
| 236 | 
            +
                            f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
         | 
| 237 | 
            +
                        )
         | 
| 238 | 
            +
             | 
| 239 | 
            +
                    if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
         | 
| 240 | 
            +
                        raise ValueError(
         | 
| 241 | 
            +
                            f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
         | 
| 242 | 
            +
                        )
         | 
| 243 | 
            +
             | 
| 244 | 
            +
                    if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
         | 
| 245 | 
            +
                        raise ValueError(
         | 
| 246 | 
            +
                            f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
         | 
| 247 | 
            +
                        )
         | 
| 248 | 
            +
             | 
| 249 | 
            +
                    if isinstance(transformer_layers_per_block, int):
         | 
| 250 | 
            +
                        transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
         | 
| 251 | 
            +
             | 
| 252 | 
            +
                    # input
         | 
| 253 | 
            +
                    conv_in_kernel = 3
         | 
| 254 | 
            +
                    conv_in_padding = (conv_in_kernel - 1) // 2
         | 
| 255 | 
            +
                    self.conv_in = nn.Conv2d(
         | 
| 256 | 
            +
                        in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
         | 
| 257 | 
            +
                    )
         | 
| 258 | 
            +
             | 
| 259 | 
            +
                    # time
         | 
| 260 | 
            +
                    time_embed_dim = block_out_channels[0] * 4
         | 
| 261 | 
            +
                    self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
         | 
| 262 | 
            +
                    timestep_input_dim = block_out_channels[0]
         | 
| 263 | 
            +
                    self.time_embedding = TimestepEmbedding(
         | 
| 264 | 
            +
                        timestep_input_dim,
         | 
| 265 | 
            +
                        time_embed_dim,
         | 
| 266 | 
            +
                        act_fn=act_fn,
         | 
| 267 | 
            +
                    )
         | 
| 268 | 
            +
             | 
| 269 | 
            +
                    if encoder_hid_dim_type is None and encoder_hid_dim is not None:
         | 
| 270 | 
            +
                        encoder_hid_dim_type = "text_proj"
         | 
| 271 | 
            +
                        self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
         | 
| 272 | 
            +
                        logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
         | 
| 273 | 
            +
             | 
| 274 | 
            +
                    if encoder_hid_dim is None and encoder_hid_dim_type is not None:
         | 
| 275 | 
            +
                        raise ValueError(
         | 
| 276 | 
            +
                            f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
         | 
| 277 | 
            +
                        )
         | 
| 278 | 
            +
             | 
| 279 | 
            +
                    if encoder_hid_dim_type == "text_proj":
         | 
| 280 | 
            +
                        self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
         | 
| 281 | 
            +
                    elif encoder_hid_dim_type == "text_image_proj":
         | 
| 282 | 
            +
                        # image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
         | 
| 283 | 
            +
                        # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
         | 
| 284 | 
            +
                        # case when `addition_embed_type == "text_image_proj"` (Kandinsky 2.1)`
         | 
| 285 | 
            +
                        self.encoder_hid_proj = TextImageProjection(
         | 
| 286 | 
            +
                            text_embed_dim=encoder_hid_dim,
         | 
| 287 | 
            +
                            image_embed_dim=cross_attention_dim,
         | 
| 288 | 
            +
                            cross_attention_dim=cross_attention_dim,
         | 
| 289 | 
            +
                        )
         | 
| 290 | 
            +
             | 
| 291 | 
            +
                    elif encoder_hid_dim_type is not None:
         | 
| 292 | 
            +
                        raise ValueError(
         | 
| 293 | 
            +
                            f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
         | 
| 294 | 
            +
                        )
         | 
| 295 | 
            +
                    else:
         | 
| 296 | 
            +
                        self.encoder_hid_proj = None
         | 
| 297 | 
            +
             | 
| 298 | 
            +
                    # class embedding
         | 
| 299 | 
            +
                    if class_embed_type is None and num_class_embeds is not None:
         | 
| 300 | 
            +
                        self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
         | 
| 301 | 
            +
                    elif class_embed_type == "timestep":
         | 
| 302 | 
            +
                        self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
         | 
| 303 | 
            +
                    elif class_embed_type == "identity":
         | 
| 304 | 
            +
                        self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
         | 
| 305 | 
            +
                    elif class_embed_type == "projection":
         | 
| 306 | 
            +
                        if projection_class_embeddings_input_dim is None:
         | 
| 307 | 
            +
                            raise ValueError(
         | 
| 308 | 
            +
                                "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
         | 
| 309 | 
            +
                            )
         | 
| 310 | 
            +
                        # The projection `class_embed_type` is the same as the timestep `class_embed_type` except
         | 
| 311 | 
            +
                        # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
         | 
| 312 | 
            +
                        # 2. it projects from an arbitrary input dimension.
         | 
| 313 | 
            +
                        #
         | 
| 314 | 
            +
                        # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
         | 
| 315 | 
            +
                        # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
         | 
| 316 | 
            +
                        # As a result, `TimestepEmbedding` can be passed arbitrary vectors.
         | 
| 317 | 
            +
                        self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
         | 
| 318 | 
            +
                    else:
         | 
| 319 | 
            +
                        self.class_embedding = None
         | 
| 320 | 
            +
             | 
| 321 | 
            +
                    if addition_embed_type == "text":
         | 
| 322 | 
            +
                        if encoder_hid_dim is not None:
         | 
| 323 | 
            +
                            text_time_embedding_from_dim = encoder_hid_dim
         | 
| 324 | 
            +
                        else:
         | 
| 325 | 
            +
                            text_time_embedding_from_dim = cross_attention_dim
         | 
| 326 | 
            +
             | 
| 327 | 
            +
                        self.add_embedding = TextTimeEmbedding(
         | 
| 328 | 
            +
                            text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
         | 
| 329 | 
            +
                        )
         | 
| 330 | 
            +
                    elif addition_embed_type == "text_image":
         | 
| 331 | 
            +
                        # text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
         | 
| 332 | 
            +
                        # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
         | 
| 333 | 
            +
                        # case when `addition_embed_type == "text_image"` (Kandinsky 2.1)`
         | 
| 334 | 
            +
                        self.add_embedding = TextImageTimeEmbedding(
         | 
| 335 | 
            +
                            text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
         | 
| 336 | 
            +
                        )
         | 
| 337 | 
            +
                    elif addition_embed_type == "text_time":
         | 
| 338 | 
            +
                        self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
         | 
| 339 | 
            +
                        self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
         | 
| 340 | 
            +
             | 
| 341 | 
            +
                    elif addition_embed_type is not None:
         | 
| 342 | 
            +
                        raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
         | 
| 343 | 
            +
             | 
| 344 | 
            +
                    # control net conditioning embedding
         | 
| 345 | 
            +
                    self.controlnet_cond_embedding = ControlNetConditioningEmbedding(
         | 
| 346 | 
            +
                        conditioning_embedding_channels=block_out_channels[0],
         | 
| 347 | 
            +
                        block_out_channels=conditioning_embedding_out_channels,
         | 
| 348 | 
            +
                        conditioning_channels=conditioning_channels,
         | 
| 349 | 
            +
                    )
         | 
| 350 | 
            +
             | 
| 351 | 
            +
                    self.down_blocks = nn.ModuleList([])
         | 
| 352 | 
            +
                    self.controlnet_down_blocks = nn.ModuleList([])
         | 
| 353 | 
            +
             | 
| 354 | 
            +
                    if isinstance(only_cross_attention, bool):
         | 
| 355 | 
            +
                        only_cross_attention = [only_cross_attention] * len(down_block_types)
         | 
| 356 | 
            +
             | 
| 357 | 
            +
                    if isinstance(attention_head_dim, int):
         | 
| 358 | 
            +
                        attention_head_dim = (attention_head_dim,) * len(down_block_types)
         | 
| 359 | 
            +
             | 
| 360 | 
            +
                    if isinstance(num_attention_heads, int):
         | 
| 361 | 
            +
                        num_attention_heads = (num_attention_heads,) * len(down_block_types)
         | 
| 362 | 
            +
             | 
| 363 | 
            +
                    # down
         | 
| 364 | 
            +
                    output_channel = block_out_channels[0]
         | 
| 365 | 
            +
             | 
| 366 | 
            +
                    controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
         | 
| 367 | 
            +
                    controlnet_block = zero_module(controlnet_block)
         | 
| 368 | 
            +
                    self.controlnet_down_blocks.append(controlnet_block)
         | 
| 369 | 
            +
             | 
| 370 | 
            +
                    for i, down_block_type in enumerate(down_block_types):
         | 
| 371 | 
            +
                        input_channel = output_channel
         | 
| 372 | 
            +
                        output_channel = block_out_channels[i]
         | 
| 373 | 
            +
                        is_final_block = i == len(block_out_channels) - 1
         | 
| 374 | 
            +
             | 
| 375 | 
            +
                        down_block = get_down_block(
         | 
| 376 | 
            +
                            down_block_type,
         | 
| 377 | 
            +
                            num_layers=layers_per_block,
         | 
| 378 | 
            +
                            transformer_layers_per_block=transformer_layers_per_block[i],
         | 
| 379 | 
            +
                            in_channels=input_channel,
         | 
| 380 | 
            +
                            out_channels=output_channel,
         | 
| 381 | 
            +
                            temb_channels=time_embed_dim,
         | 
| 382 | 
            +
                            add_downsample=not is_final_block,
         | 
| 383 | 
            +
                            resnet_eps=norm_eps,
         | 
| 384 | 
            +
                            resnet_act_fn=act_fn,
         | 
| 385 | 
            +
                            resnet_groups=norm_num_groups,
         | 
| 386 | 
            +
                            cross_attention_dim=cross_attention_dim,
         | 
| 387 | 
            +
                            num_attention_heads=num_attention_heads[i],
         | 
| 388 | 
            +
                            attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
         | 
| 389 | 
            +
                            downsample_padding=downsample_padding,
         | 
| 390 | 
            +
                            use_linear_projection=use_linear_projection,
         | 
| 391 | 
            +
                            only_cross_attention=only_cross_attention[i],
         | 
| 392 | 
            +
                            upcast_attention=upcast_attention,
         | 
| 393 | 
            +
                            resnet_time_scale_shift=resnet_time_scale_shift,
         | 
| 394 | 
            +
                        )
         | 
| 395 | 
            +
                        self.down_blocks.append(down_block)
         | 
| 396 | 
            +
             | 
| 397 | 
            +
                        for _ in range(layers_per_block):
         | 
| 398 | 
            +
                            controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
         | 
| 399 | 
            +
                            controlnet_block = zero_module(controlnet_block)
         | 
| 400 | 
            +
                            self.controlnet_down_blocks.append(controlnet_block)
         | 
| 401 | 
            +
             | 
| 402 | 
            +
                        if not is_final_block:
         | 
| 403 | 
            +
                            controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
         | 
| 404 | 
            +
                            controlnet_block = zero_module(controlnet_block)
         | 
| 405 | 
            +
                            self.controlnet_down_blocks.append(controlnet_block)
         | 
| 406 | 
            +
             | 
| 407 | 
            +
                    # mid
         | 
| 408 | 
            +
                    mid_block_channel = block_out_channels[-1]
         | 
| 409 | 
            +
             | 
| 410 | 
            +
                    controlnet_block = nn.Conv2d(mid_block_channel, mid_block_channel, kernel_size=1)
         | 
| 411 | 
            +
                    controlnet_block = zero_module(controlnet_block)
         | 
| 412 | 
            +
                    self.controlnet_mid_block = controlnet_block
         | 
| 413 | 
            +
             | 
| 414 | 
            +
                    if mid_block_type == "UNetMidBlock2DCrossAttn":
         | 
| 415 | 
            +
                        self.mid_block = UNetMidBlock2DCrossAttn(
         | 
| 416 | 
            +
                            transformer_layers_per_block=transformer_layers_per_block[-1],
         | 
| 417 | 
            +
                            in_channels=mid_block_channel,
         | 
| 418 | 
            +
                            temb_channels=time_embed_dim,
         | 
| 419 | 
            +
                            resnet_eps=norm_eps,
         | 
| 420 | 
            +
                            resnet_act_fn=act_fn,
         | 
| 421 | 
            +
                            output_scale_factor=mid_block_scale_factor,
         | 
| 422 | 
            +
                            resnet_time_scale_shift=resnet_time_scale_shift,
         | 
| 423 | 
            +
                            cross_attention_dim=cross_attention_dim,
         | 
| 424 | 
            +
                            num_attention_heads=num_attention_heads[-1],
         | 
| 425 | 
            +
                            resnet_groups=norm_num_groups,
         | 
| 426 | 
            +
                            use_linear_projection=use_linear_projection,
         | 
| 427 | 
            +
                            upcast_attention=upcast_attention,
         | 
| 428 | 
            +
                        )
         | 
| 429 | 
            +
                    elif mid_block_type == "UNetMidBlock2D":
         | 
| 430 | 
            +
                        self.mid_block = UNetMidBlock2D(
         | 
| 431 | 
            +
                            in_channels=block_out_channels[-1],
         | 
| 432 | 
            +
                            temb_channels=time_embed_dim,
         | 
| 433 | 
            +
                            num_layers=0,
         | 
| 434 | 
            +
                            resnet_eps=norm_eps,
         | 
| 435 | 
            +
                            resnet_act_fn=act_fn,
         | 
| 436 | 
            +
                            output_scale_factor=mid_block_scale_factor,
         | 
| 437 | 
            +
                            resnet_groups=norm_num_groups,
         | 
| 438 | 
            +
                            resnet_time_scale_shift=resnet_time_scale_shift,
         | 
| 439 | 
            +
                            add_attention=False,
         | 
| 440 | 
            +
                        )
         | 
| 441 | 
            +
                    else:
         | 
| 442 | 
            +
                        raise ValueError(f"unknown mid_block_type : {mid_block_type}")
         | 
| 443 | 
            +
             | 
| 444 | 
            +
                @classmethod
         | 
| 445 | 
            +
                def from_unet(
         | 
| 446 | 
            +
                    cls,
         | 
| 447 | 
            +
                    unet: UNet2DConditionModel,
         | 
| 448 | 
            +
                    controlnet_conditioning_channel_order: str = "rgb",
         | 
| 449 | 
            +
                    conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256),
         | 
| 450 | 
            +
                    load_weights_from_unet: bool = True,
         | 
| 451 | 
            +
                    conditioning_channels: int = 3,
         | 
| 452 | 
            +
                ):
         | 
| 453 | 
            +
                    r"""
         | 
| 454 | 
            +
                    Instantiate a [`ControlNetModel`] from [`UNet2DConditionModel`].
         | 
| 455 | 
            +
             | 
| 456 | 
            +
                    Parameters:
         | 
| 457 | 
            +
                        unet (`UNet2DConditionModel`):
         | 
| 458 | 
            +
                            The UNet model weights to copy to the [`ControlNetModel`]. All configuration options are also copied
         | 
| 459 | 
            +
                            where applicable.
         | 
| 460 | 
            +
                    """
         | 
| 461 | 
            +
                    transformer_layers_per_block = (
         | 
| 462 | 
            +
                        unet.config.transformer_layers_per_block if "transformer_layers_per_block" in unet.config else 1
         | 
| 463 | 
            +
                    )
         | 
| 464 | 
            +
                    encoder_hid_dim = unet.config.encoder_hid_dim if "encoder_hid_dim" in unet.config else None
         | 
| 465 | 
            +
                    encoder_hid_dim_type = unet.config.encoder_hid_dim_type if "encoder_hid_dim_type" in unet.config else None
         | 
| 466 | 
            +
                    addition_embed_type = unet.config.addition_embed_type if "addition_embed_type" in unet.config else None
         | 
| 467 | 
            +
                    addition_time_embed_dim = (
         | 
| 468 | 
            +
                        unet.config.addition_time_embed_dim if "addition_time_embed_dim" in unet.config else None
         | 
| 469 | 
            +
                    )
         | 
| 470 | 
            +
             | 
| 471 | 
            +
                    controlnet = cls(
         | 
| 472 | 
            +
                        encoder_hid_dim=encoder_hid_dim,
         | 
| 473 | 
            +
                        encoder_hid_dim_type=encoder_hid_dim_type,
         | 
| 474 | 
            +
                        addition_embed_type=addition_embed_type,
         | 
| 475 | 
            +
                        addition_time_embed_dim=addition_time_embed_dim,
         | 
| 476 | 
            +
                        transformer_layers_per_block=transformer_layers_per_block,
         | 
| 477 | 
            +
                        in_channels=unet.config.in_channels,
         | 
| 478 | 
            +
                        flip_sin_to_cos=unet.config.flip_sin_to_cos,
         | 
| 479 | 
            +
                        freq_shift=unet.config.freq_shift,
         | 
| 480 | 
            +
                        down_block_types=unet.config.down_block_types,
         | 
| 481 | 
            +
                        only_cross_attention=unet.config.only_cross_attention,
         | 
| 482 | 
            +
                        block_out_channels=unet.config.block_out_channels,
         | 
| 483 | 
            +
                        layers_per_block=unet.config.layers_per_block,
         | 
| 484 | 
            +
                        downsample_padding=unet.config.downsample_padding,
         | 
| 485 | 
            +
                        mid_block_scale_factor=unet.config.mid_block_scale_factor,
         | 
| 486 | 
            +
                        act_fn=unet.config.act_fn,
         | 
| 487 | 
            +
                        norm_num_groups=unet.config.norm_num_groups,
         | 
| 488 | 
            +
                        norm_eps=unet.config.norm_eps,
         | 
| 489 | 
            +
                        cross_attention_dim=unet.config.cross_attention_dim,
         | 
| 490 | 
            +
                        attention_head_dim=unet.config.attention_head_dim,
         | 
| 491 | 
            +
                        num_attention_heads=unet.config.num_attention_heads,
         | 
| 492 | 
            +
                        use_linear_projection=unet.config.use_linear_projection,
         | 
| 493 | 
            +
                        class_embed_type=unet.config.class_embed_type,
         | 
| 494 | 
            +
                        num_class_embeds=unet.config.num_class_embeds,
         | 
| 495 | 
            +
                        upcast_attention=unet.config.upcast_attention,
         | 
| 496 | 
            +
                        resnet_time_scale_shift=unet.config.resnet_time_scale_shift,
         | 
| 497 | 
            +
                        projection_class_embeddings_input_dim=unet.config.projection_class_embeddings_input_dim,
         | 
| 498 | 
            +
                        mid_block_type=unet.config.mid_block_type,
         | 
| 499 | 
            +
                        controlnet_conditioning_channel_order=controlnet_conditioning_channel_order,
         | 
| 500 | 
            +
                        conditioning_embedding_out_channels=conditioning_embedding_out_channels,
         | 
| 501 | 
            +
                        conditioning_channels=conditioning_channels,
         | 
| 502 | 
            +
                    )
         | 
| 503 | 
            +
             | 
| 504 | 
            +
                    if load_weights_from_unet:
         | 
| 505 | 
            +
                        controlnet.conv_in.load_state_dict(unet.conv_in.state_dict())
         | 
| 506 | 
            +
                        controlnet.time_proj.load_state_dict(unet.time_proj.state_dict())
         | 
| 507 | 
            +
                        controlnet.time_embedding.load_state_dict(unet.time_embedding.state_dict())
         | 
| 508 | 
            +
             | 
| 509 | 
            +
                        if controlnet.class_embedding:
         | 
| 510 | 
            +
                            controlnet.class_embedding.load_state_dict(unet.class_embedding.state_dict())
         | 
| 511 | 
            +
             | 
| 512 | 
            +
                        if hasattr(controlnet, "add_embedding"):
         | 
| 513 | 
            +
                            controlnet.add_embedding.load_state_dict(unet.add_embedding.state_dict())
         | 
| 514 | 
            +
             | 
| 515 | 
            +
                        controlnet.down_blocks.load_state_dict(unet.down_blocks.state_dict())
         | 
| 516 | 
            +
                        controlnet.mid_block.load_state_dict(unet.mid_block.state_dict())
         | 
| 517 | 
            +
             | 
| 518 | 
            +
                    return controlnet
         | 
| 519 | 
            +
             | 
| 520 | 
            +
                @property
         | 
| 521 | 
            +
                # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
         | 
| 522 | 
            +
                def attn_processors(self) -> Dict[str, AttentionProcessor]:
         | 
| 523 | 
            +
                    r"""
         | 
| 524 | 
            +
                    Returns:
         | 
| 525 | 
            +
                        `dict` of attention processors: A dictionary containing all attention processors used in the model with
         | 
| 526 | 
            +
                        indexed by its weight name.
         | 
| 527 | 
            +
                    """
         | 
| 528 | 
            +
                    # set recursively
         | 
| 529 | 
            +
                    processors = {}
         | 
| 530 | 
            +
             | 
| 531 | 
            +
                    def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
         | 
| 532 | 
            +
                        if hasattr(module, "get_processor"):
         | 
| 533 | 
            +
                            processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
         | 
| 534 | 
            +
             | 
| 535 | 
            +
                        for sub_name, child in module.named_children():
         | 
| 536 | 
            +
                            fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
         | 
| 537 | 
            +
             | 
| 538 | 
            +
                        return processors
         | 
| 539 | 
            +
             | 
| 540 | 
            +
                    for name, module in self.named_children():
         | 
| 541 | 
            +
                        fn_recursive_add_processors(name, module, processors)
         | 
| 542 | 
            +
             | 
| 543 | 
            +
                    return processors
         | 
| 544 | 
            +
             | 
| 545 | 
            +
                # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
         | 
| 546 | 
            +
                def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
         | 
| 547 | 
            +
                    r"""
         | 
| 548 | 
            +
                    Sets the attention processor to use to compute attention.
         | 
| 549 | 
            +
             | 
| 550 | 
            +
                    Parameters:
         | 
| 551 | 
            +
                        processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
         | 
| 552 | 
            +
                            The instantiated processor class or a dictionary of processor classes that will be set as the processor
         | 
| 553 | 
            +
                            for **all** `Attention` layers.
         | 
| 554 | 
            +
             | 
| 555 | 
            +
                            If `processor` is a dict, the key needs to define the path to the corresponding cross attention
         | 
| 556 | 
            +
                            processor. This is strongly recommended when setting trainable attention processors.
         | 
| 557 | 
            +
             | 
| 558 | 
            +
                    """
         | 
| 559 | 
            +
                    count = len(self.attn_processors.keys())
         | 
| 560 | 
            +
             | 
| 561 | 
            +
                    if isinstance(processor, dict) and len(processor) != count:
         | 
| 562 | 
            +
                        raise ValueError(
         | 
| 563 | 
            +
                            f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
         | 
| 564 | 
            +
                            f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
         | 
| 565 | 
            +
                        )
         | 
| 566 | 
            +
             | 
| 567 | 
            +
                    def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
         | 
| 568 | 
            +
                        if hasattr(module, "set_processor"):
         | 
| 569 | 
            +
                            if not isinstance(processor, dict):
         | 
| 570 | 
            +
                                module.set_processor(processor)
         | 
| 571 | 
            +
                            else:
         | 
| 572 | 
            +
                                module.set_processor(processor.pop(f"{name}.processor"))
         | 
| 573 | 
            +
             | 
| 574 | 
            +
                        for sub_name, child in module.named_children():
         | 
| 575 | 
            +
                            fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
         | 
| 576 | 
            +
             | 
| 577 | 
            +
                    for name, module in self.named_children():
         | 
| 578 | 
            +
                        fn_recursive_attn_processor(name, module, processor)
         | 
| 579 | 
            +
             | 
| 580 | 
            +
                # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
         | 
| 581 | 
            +
                def set_default_attn_processor(self):
         | 
| 582 | 
            +
                    """
         | 
| 583 | 
            +
                    Disables custom attention processors and sets the default attention implementation.
         | 
| 584 | 
            +
                    """
         | 
| 585 | 
            +
                    if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
         | 
| 586 | 
            +
                        processor = AttnAddedKVProcessor()
         | 
| 587 | 
            +
                    elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
         | 
| 588 | 
            +
                        processor = AttnProcessor()
         | 
| 589 | 
            +
                    else:
         | 
| 590 | 
            +
                        raise ValueError(
         | 
| 591 | 
            +
                            f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
         | 
| 592 | 
            +
                        )
         | 
| 593 | 
            +
             | 
| 594 | 
            +
                    self.set_attn_processor(processor)
         | 
| 595 | 
            +
             | 
| 596 | 
            +
                # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attention_slice
         | 
| 597 | 
            +
                def set_attention_slice(self, slice_size: Union[str, int, List[int]]) -> None:
         | 
| 598 | 
            +
                    r"""
         | 
| 599 | 
            +
                    Enable sliced attention computation.
         | 
| 600 | 
            +
             | 
| 601 | 
            +
                    When this option is enabled, the attention module splits the input tensor in slices to compute attention in
         | 
| 602 | 
            +
                    several steps. This is useful for saving some memory in exchange for a small decrease in speed.
         | 
| 603 | 
            +
             | 
| 604 | 
            +
                    Args:
         | 
| 605 | 
            +
                        slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
         | 
| 606 | 
            +
                            When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
         | 
| 607 | 
            +
                            `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
         | 
| 608 | 
            +
                            provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
         | 
| 609 | 
            +
                            must be a multiple of `slice_size`.
         | 
| 610 | 
            +
                    """
         | 
| 611 | 
            +
                    sliceable_head_dims = []
         | 
| 612 | 
            +
             | 
| 613 | 
            +
                    def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
         | 
| 614 | 
            +
                        if hasattr(module, "set_attention_slice"):
         | 
| 615 | 
            +
                            sliceable_head_dims.append(module.sliceable_head_dim)
         | 
| 616 | 
            +
             | 
| 617 | 
            +
                        for child in module.children():
         | 
| 618 | 
            +
                            fn_recursive_retrieve_sliceable_dims(child)
         | 
| 619 | 
            +
             | 
| 620 | 
            +
                    # retrieve number of attention layers
         | 
| 621 | 
            +
                    for module in self.children():
         | 
| 622 | 
            +
                        fn_recursive_retrieve_sliceable_dims(module)
         | 
| 623 | 
            +
             | 
| 624 | 
            +
                    num_sliceable_layers = len(sliceable_head_dims)
         | 
| 625 | 
            +
             | 
| 626 | 
            +
                    if slice_size == "auto":
         | 
| 627 | 
            +
                        # half the attention head size is usually a good trade-off between
         | 
| 628 | 
            +
                        # speed and memory
         | 
| 629 | 
            +
                        slice_size = [dim // 2 for dim in sliceable_head_dims]
         | 
| 630 | 
            +
                    elif slice_size == "max":
         | 
| 631 | 
            +
                        # make smallest slice possible
         | 
| 632 | 
            +
                        slice_size = num_sliceable_layers * [1]
         | 
| 633 | 
            +
             | 
| 634 | 
            +
                    slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
         | 
| 635 | 
            +
             | 
| 636 | 
            +
                    if len(slice_size) != len(sliceable_head_dims):
         | 
| 637 | 
            +
                        raise ValueError(
         | 
| 638 | 
            +
                            f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
         | 
| 639 | 
            +
                            f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
         | 
| 640 | 
            +
                        )
         | 
| 641 | 
            +
             | 
| 642 | 
            +
                    for i in range(len(slice_size)):
         | 
| 643 | 
            +
                        size = slice_size[i]
         | 
| 644 | 
            +
                        dim = sliceable_head_dims[i]
         | 
| 645 | 
            +
                        if size is not None and size > dim:
         | 
| 646 | 
            +
                            raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
         | 
| 647 | 
            +
             | 
| 648 | 
            +
                    # Recursively walk through all the children.
         | 
| 649 | 
            +
                    # Any children which exposes the set_attention_slice method
         | 
| 650 | 
            +
                    # gets the message
         | 
| 651 | 
            +
                    def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
         | 
| 652 | 
            +
                        if hasattr(module, "set_attention_slice"):
         | 
| 653 | 
            +
                            module.set_attention_slice(slice_size.pop())
         | 
| 654 | 
            +
             | 
| 655 | 
            +
                        for child in module.children():
         | 
| 656 | 
            +
                            fn_recursive_set_attention_slice(child, slice_size)
         | 
| 657 | 
            +
             | 
| 658 | 
            +
                    reversed_slice_size = list(reversed(slice_size))
         | 
| 659 | 
            +
                    for module in self.children():
         | 
| 660 | 
            +
                        fn_recursive_set_attention_slice(module, reversed_slice_size)
         | 
| 661 | 
            +
             | 
| 662 | 
            +
                def _set_gradient_checkpointing(self, module, value: bool = False) -> None:
         | 
| 663 | 
            +
                    if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D)):
         | 
| 664 | 
            +
                        module.gradient_checkpointing = value
         | 
| 665 | 
            +
             | 
| 666 | 
            +
                def forward(
         | 
| 667 | 
            +
                    self,
         | 
| 668 | 
            +
                    sample: torch.FloatTensor,
         | 
| 669 | 
            +
                    timestep: Union[torch.Tensor, float, int],
         | 
| 670 | 
            +
                    encoder_hidden_states: torch.Tensor,
         | 
| 671 | 
            +
                    controlnet_cond: torch.FloatTensor,
         | 
| 672 | 
            +
                    conditioning_scale: float = 1.0,
         | 
| 673 | 
            +
                    class_labels: Optional[torch.Tensor] = None,
         | 
| 674 | 
            +
                    timestep_cond: Optional[torch.Tensor] = None,
         | 
| 675 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 676 | 
            +
                    added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
         | 
| 677 | 
            +
                    cross_attention_kwargs: Optional[Dict[str, Any]] = None,
         | 
| 678 | 
            +
                    guess_mode: bool = False,
         | 
| 679 | 
            +
                    return_dict: bool = True,
         | 
| 680 | 
            +
                ) -> Union[ControlNetOutput, Tuple[Tuple[torch.FloatTensor, ...], torch.FloatTensor]]:
         | 
| 681 | 
            +
                    """
         | 
| 682 | 
            +
                    The [`ControlNetModel`] forward method.
         | 
| 683 | 
            +
             | 
| 684 | 
            +
                    Args:
         | 
| 685 | 
            +
                        sample (`torch.FloatTensor`):
         | 
| 686 | 
            +
                            The noisy input tensor.
         | 
| 687 | 
            +
                        timestep (`Union[torch.Tensor, float, int]`):
         | 
| 688 | 
            +
                            The number of timesteps to denoise an input.
         | 
| 689 | 
            +
                        encoder_hidden_states (`torch.Tensor`):
         | 
| 690 | 
            +
                            The encoder hidden states.
         | 
| 691 | 
            +
                        controlnet_cond (`torch.FloatTensor`):
         | 
| 692 | 
            +
                            The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
         | 
| 693 | 
            +
                        conditioning_scale (`float`, defaults to `1.0`):
         | 
| 694 | 
            +
                            The scale factor for ControlNet outputs.
         | 
| 695 | 
            +
                        class_labels (`torch.Tensor`, *optional*, defaults to `None`):
         | 
| 696 | 
            +
                            Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
         | 
| 697 | 
            +
                        timestep_cond (`torch.Tensor`, *optional*, defaults to `None`):
         | 
| 698 | 
            +
                            Additional conditional embeddings for timestep. If provided, the embeddings will be summed with the
         | 
| 699 | 
            +
                            timestep_embedding passed through the `self.time_embedding` layer to obtain the final timestep
         | 
| 700 | 
            +
                            embeddings.
         | 
| 701 | 
            +
                        attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
         | 
| 702 | 
            +
                            An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
         | 
| 703 | 
            +
                            is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
         | 
| 704 | 
            +
                            negative values to the attention scores corresponding to "discard" tokens.
         | 
| 705 | 
            +
                        added_cond_kwargs (`dict`):
         | 
| 706 | 
            +
                            Additional conditions for the Stable Diffusion XL UNet.
         | 
| 707 | 
            +
                        cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`):
         | 
| 708 | 
            +
                            A kwargs dictionary that if specified is passed along to the `AttnProcessor`.
         | 
| 709 | 
            +
                        guess_mode (`bool`, defaults to `False`):
         | 
| 710 | 
            +
                            In this mode, the ControlNet encoder tries its best to recognize the input content of the input even if
         | 
| 711 | 
            +
                            you remove all prompts. A `guidance_scale` between 3.0 and 5.0 is recommended.
         | 
| 712 | 
            +
                        return_dict (`bool`, defaults to `True`):
         | 
| 713 | 
            +
                            Whether or not to return a [`~models.controlnet.ControlNetOutput`] instead of a plain tuple.
         | 
| 714 | 
            +
             | 
| 715 | 
            +
                    Returns:
         | 
| 716 | 
            +
                        [`~models.controlnet.ControlNetOutput`] **or** `tuple`:
         | 
| 717 | 
            +
                            If `return_dict` is `True`, a [`~models.controlnet.ControlNetOutput`] is returned, otherwise a tuple is
         | 
| 718 | 
            +
                            returned where the first element is the sample tensor.
         | 
| 719 | 
            +
                    """
         | 
| 720 | 
            +
                    # check channel order
         | 
| 721 | 
            +
                    channel_order = self.config.controlnet_conditioning_channel_order
         | 
| 722 | 
            +
             | 
| 723 | 
            +
                    if channel_order == "rgb":
         | 
| 724 | 
            +
                        # in rgb order by default
         | 
| 725 | 
            +
                        ...
         | 
| 726 | 
            +
                    elif channel_order == "bgr":
         | 
| 727 | 
            +
                        controlnet_cond = torch.flip(controlnet_cond, dims=[1])
         | 
| 728 | 
            +
                    else:
         | 
| 729 | 
            +
                        raise ValueError(f"unknown `controlnet_conditioning_channel_order`: {channel_order}")
         | 
| 730 | 
            +
             | 
| 731 | 
            +
                    # prepare attention_mask
         | 
| 732 | 
            +
                    if attention_mask is not None:
         | 
| 733 | 
            +
                        attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
         | 
| 734 | 
            +
                        attention_mask = attention_mask.unsqueeze(1)
         | 
| 735 | 
            +
             | 
| 736 | 
            +
                    # 1. time
         | 
| 737 | 
            +
                    timesteps = timestep
         | 
| 738 | 
            +
                    if not torch.is_tensor(timesteps):
         | 
| 739 | 
            +
                        # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
         | 
| 740 | 
            +
                        # This would be a good case for the `match` statement (Python 3.10+)
         | 
| 741 | 
            +
                        is_mps = sample.device.type == "mps"
         | 
| 742 | 
            +
                        if isinstance(timestep, float):
         | 
| 743 | 
            +
                            dtype = torch.float32 if is_mps else torch.float64
         | 
| 744 | 
            +
                        else:
         | 
| 745 | 
            +
                            dtype = torch.int32 if is_mps else torch.int64
         | 
| 746 | 
            +
                        timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
         | 
| 747 | 
            +
                    elif len(timesteps.shape) == 0:
         | 
| 748 | 
            +
                        timesteps = timesteps[None].to(sample.device)
         | 
| 749 | 
            +
             | 
| 750 | 
            +
                    # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
         | 
| 751 | 
            +
                    timesteps = timesteps.expand(sample.shape[0])
         | 
| 752 | 
            +
             | 
| 753 | 
            +
                    t_emb = self.time_proj(timesteps)
         | 
| 754 | 
            +
             | 
| 755 | 
            +
                    # timesteps does not contain any weights and will always return f32 tensors
         | 
| 756 | 
            +
                    # but time_embedding might actually be running in fp16. so we need to cast here.
         | 
| 757 | 
            +
                    # there might be better ways to encapsulate this.
         | 
| 758 | 
            +
                    t_emb = t_emb.to(dtype=sample.dtype)
         | 
| 759 | 
            +
             | 
| 760 | 
            +
                    emb = self.time_embedding(t_emb, timestep_cond)
         | 
| 761 | 
            +
                    aug_emb = None
         | 
| 762 | 
            +
             | 
| 763 | 
            +
                    if self.class_embedding is not None:
         | 
| 764 | 
            +
                        if class_labels is None:
         | 
| 765 | 
            +
                            raise ValueError("class_labels should be provided when num_class_embeds > 0")
         | 
| 766 | 
            +
             | 
| 767 | 
            +
                        if self.config.class_embed_type == "timestep":
         | 
| 768 | 
            +
                            class_labels = self.time_proj(class_labels)
         | 
| 769 | 
            +
             | 
| 770 | 
            +
                        class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
         | 
| 771 | 
            +
                        emb = emb + class_emb
         | 
| 772 | 
            +
             | 
| 773 | 
            +
                    if self.config.addition_embed_type is not None:
         | 
| 774 | 
            +
                        if self.config.addition_embed_type == "text":
         | 
| 775 | 
            +
                            aug_emb = self.add_embedding(encoder_hidden_states)
         | 
| 776 | 
            +
             | 
| 777 | 
            +
                        elif self.config.addition_embed_type == "text_time":
         | 
| 778 | 
            +
                            if "text_embeds" not in added_cond_kwargs:
         | 
| 779 | 
            +
                                raise ValueError(
         | 
| 780 | 
            +
                                    f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
         | 
| 781 | 
            +
                                )
         | 
| 782 | 
            +
                            text_embeds = added_cond_kwargs.get("text_embeds")
         | 
| 783 | 
            +
                            if "time_ids" not in added_cond_kwargs:
         | 
| 784 | 
            +
                                raise ValueError(
         | 
| 785 | 
            +
                                    f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
         | 
| 786 | 
            +
                                )
         | 
| 787 | 
            +
                            time_ids = added_cond_kwargs.get("time_ids")
         | 
| 788 | 
            +
                            time_embeds = self.add_time_proj(time_ids.flatten())
         | 
| 789 | 
            +
                            time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
         | 
| 790 | 
            +
             | 
| 791 | 
            +
                            add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
         | 
| 792 | 
            +
                            add_embeds = add_embeds.to(emb.dtype)
         | 
| 793 | 
            +
                            aug_emb = self.add_embedding(add_embeds)
         | 
| 794 | 
            +
             | 
| 795 | 
            +
                    emb = emb + aug_emb if aug_emb is not None else emb
         | 
| 796 | 
            +
             | 
| 797 | 
            +
                    # 2. pre-process
         | 
| 798 | 
            +
                    sample = self.conv_in(sample)
         | 
| 799 | 
            +
             | 
| 800 | 
            +
                    controlnet_cond = self.controlnet_cond_embedding(controlnet_cond)
         | 
| 801 | 
            +
                    sample = sample + controlnet_cond
         | 
| 802 | 
            +
             | 
| 803 | 
            +
                    # 3. down
         | 
| 804 | 
            +
                    down_block_res_samples = (sample,)
         | 
| 805 | 
            +
                    for downsample_block in self.down_blocks:
         | 
| 806 | 
            +
                        if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
         | 
| 807 | 
            +
                            sample, res_samples = downsample_block(
         | 
| 808 | 
            +
                                hidden_states=sample,
         | 
| 809 | 
            +
                                temb=emb,
         | 
| 810 | 
            +
                                encoder_hidden_states=encoder_hidden_states,
         | 
| 811 | 
            +
                                attention_mask=attention_mask,
         | 
| 812 | 
            +
                                cross_attention_kwargs=cross_attention_kwargs,
         | 
| 813 | 
            +
                            )
         | 
| 814 | 
            +
                        else:
         | 
| 815 | 
            +
                            sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
         | 
| 816 | 
            +
             | 
| 817 | 
            +
                        down_block_res_samples += res_samples
         | 
| 818 | 
            +
             | 
| 819 | 
            +
                    # 4. mid
         | 
| 820 | 
            +
                    if self.mid_block is not None:
         | 
| 821 | 
            +
                        if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
         | 
| 822 | 
            +
                            sample = self.mid_block(
         | 
| 823 | 
            +
                                sample,
         | 
| 824 | 
            +
                                emb,
         | 
| 825 | 
            +
                                encoder_hidden_states=encoder_hidden_states,
         | 
| 826 | 
            +
                                attention_mask=attention_mask,
         | 
| 827 | 
            +
                                cross_attention_kwargs=cross_attention_kwargs,
         | 
| 828 | 
            +
                            )
         | 
| 829 | 
            +
                        else:
         | 
| 830 | 
            +
                            sample = self.mid_block(sample, emb)
         | 
| 831 | 
            +
             | 
| 832 | 
            +
                    # 5. Control net blocks
         | 
| 833 | 
            +
             | 
| 834 | 
            +
                    controlnet_down_block_res_samples = ()
         | 
| 835 | 
            +
             | 
| 836 | 
            +
                    for down_block_res_sample, controlnet_block in zip(down_block_res_samples, self.controlnet_down_blocks):
         | 
| 837 | 
            +
                        down_block_res_sample = controlnet_block(down_block_res_sample)
         | 
| 838 | 
            +
                        controlnet_down_block_res_samples = controlnet_down_block_res_samples + (down_block_res_sample,)
         | 
| 839 | 
            +
             | 
| 840 | 
            +
                    down_block_res_samples = controlnet_down_block_res_samples
         | 
| 841 | 
            +
             | 
| 842 | 
            +
                    mid_block_res_sample = self.controlnet_mid_block(sample)
         | 
| 843 | 
            +
             | 
| 844 | 
            +
                    # 6. scaling
         | 
| 845 | 
            +
                    if guess_mode and not self.config.global_pool_conditions:
         | 
| 846 | 
            +
                        scales = torch.logspace(-1, 0, len(down_block_res_samples) + 1, device=sample.device)  # 0.1 to 1.0
         | 
| 847 | 
            +
                        scales = scales * conditioning_scale
         | 
| 848 | 
            +
                        down_block_res_samples = [sample * scale for sample, scale in zip(down_block_res_samples, scales)]
         | 
| 849 | 
            +
                        mid_block_res_sample = mid_block_res_sample * scales[-1]  # last one
         | 
| 850 | 
            +
                    else:
         | 
| 851 | 
            +
                        down_block_res_samples = [sample * conditioning_scale for sample in down_block_res_samples]
         | 
| 852 | 
            +
                        mid_block_res_sample = mid_block_res_sample * conditioning_scale
         | 
| 853 | 
            +
             | 
| 854 | 
            +
                    if self.config.global_pool_conditions:
         | 
| 855 | 
            +
                        down_block_res_samples = [
         | 
| 856 | 
            +
                            torch.mean(sample, dim=(2, 3), keepdim=True) for sample in down_block_res_samples
         | 
| 857 | 
            +
                        ]
         | 
| 858 | 
            +
                        mid_block_res_sample = torch.mean(mid_block_res_sample, dim=(2, 3), keepdim=True)
         | 
| 859 | 
            +
             | 
| 860 | 
            +
                    if not return_dict:
         | 
| 861 | 
            +
                        return (down_block_res_samples, mid_block_res_sample)
         | 
| 862 | 
            +
             | 
| 863 | 
            +
                    return ControlNetOutput(
         | 
| 864 | 
            +
                        down_block_res_samples=down_block_res_samples, mid_block_res_sample=mid_block_res_sample
         | 
| 865 | 
            +
                    )
         | 
| 866 | 
            +
             | 
| 867 | 
            +
             | 
| 868 | 
            +
            def zero_module(module):
         | 
| 869 | 
            +
                for p in module.parameters():
         | 
| 870 | 
            +
                    nn.init.zeros_(p)
         | 
| 871 | 
            +
                return module
         | 
    	
        image_processor.py
    ADDED
    
    | @@ -0,0 +1,991 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright 2024 The HuggingFace Team. All rights reserved.
         | 
| 2 | 
            +
            #
         | 
| 3 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 4 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 5 | 
            +
            # You may obtain a copy of the License at
         | 
| 6 | 
            +
            #
         | 
| 7 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 10 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 11 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 12 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 13 | 
            +
            # limitations under the License.
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            import math
         | 
| 16 | 
            +
            import warnings
         | 
| 17 | 
            +
            from typing import List, Optional, Tuple, Union
         | 
| 18 | 
            +
             | 
| 19 | 
            +
            import numpy as np
         | 
| 20 | 
            +
            import PIL.Image
         | 
| 21 | 
            +
            import torch
         | 
| 22 | 
            +
            import torch.nn.functional as F
         | 
| 23 | 
            +
            from PIL import Image, ImageFilter, ImageOps
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            from diffusers.configuration_utils import ConfigMixin, register_to_config
         | 
| 26 | 
            +
            from diffusers.utils import CONFIG_NAME, PIL_INTERPOLATION, deprecate
         | 
| 27 | 
            +
            # from .utils import CONFIG_NAME, PIL_INTERPOLATION, deprecate
         | 
| 28 | 
            +
             | 
| 29 | 
            +
             | 
| 30 | 
            +
            PipelineImageInput = Union[
         | 
| 31 | 
            +
                PIL.Image.Image,
         | 
| 32 | 
            +
                np.ndarray,
         | 
| 33 | 
            +
                torch.FloatTensor,
         | 
| 34 | 
            +
                List[PIL.Image.Image],
         | 
| 35 | 
            +
                List[np.ndarray],
         | 
| 36 | 
            +
                List[torch.FloatTensor],
         | 
| 37 | 
            +
            ]
         | 
| 38 | 
            +
             | 
| 39 | 
            +
            PipelineDepthInput = PipelineImageInput
         | 
| 40 | 
            +
             | 
| 41 | 
            +
             | 
| 42 | 
            +
            class VaeImageProcessor(ConfigMixin):
         | 
| 43 | 
            +
                """
         | 
| 44 | 
            +
                Image processor for VAE.
         | 
| 45 | 
            +
             | 
| 46 | 
            +
                Args:
         | 
| 47 | 
            +
                    do_resize (`bool`, *optional*, defaults to `True`):
         | 
| 48 | 
            +
                        Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`. Can accept
         | 
| 49 | 
            +
                        `height` and `width` arguments from [`image_processor.VaeImageProcessor.preprocess`] method.
         | 
| 50 | 
            +
                    vae_scale_factor (`int`, *optional*, defaults to `8`):
         | 
| 51 | 
            +
                        VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor.
         | 
| 52 | 
            +
                    resample (`str`, *optional*, defaults to `lanczos`):
         | 
| 53 | 
            +
                        Resampling filter to use when resizing the image.
         | 
| 54 | 
            +
                    do_normalize (`bool`, *optional*, defaults to `True`):
         | 
| 55 | 
            +
                        Whether to normalize the image to [-1,1].
         | 
| 56 | 
            +
                    do_binarize (`bool`, *optional*, defaults to `False`):
         | 
| 57 | 
            +
                        Whether to binarize the image to 0/1.
         | 
| 58 | 
            +
                    do_convert_rgb (`bool`, *optional*, defaults to be `False`):
         | 
| 59 | 
            +
                        Whether to convert the images to RGB format.
         | 
| 60 | 
            +
                    do_convert_grayscale (`bool`, *optional*, defaults to be `False`):
         | 
| 61 | 
            +
                        Whether to convert the images to grayscale format.
         | 
| 62 | 
            +
                """
         | 
| 63 | 
            +
             | 
| 64 | 
            +
                config_name = CONFIG_NAME
         | 
| 65 | 
            +
             | 
| 66 | 
            +
                @register_to_config
         | 
| 67 | 
            +
                def __init__(
         | 
| 68 | 
            +
                    self,
         | 
| 69 | 
            +
                    do_resize: bool = True,
         | 
| 70 | 
            +
                    vae_scale_factor: int = 8,
         | 
| 71 | 
            +
                    resample: str = "lanczos",
         | 
| 72 | 
            +
                    do_normalize: bool = True,
         | 
| 73 | 
            +
                    do_binarize: bool = False,
         | 
| 74 | 
            +
                    do_convert_rgb: bool = False,
         | 
| 75 | 
            +
                    do_convert_grayscale: bool = False,
         | 
| 76 | 
            +
                ):
         | 
| 77 | 
            +
                    super().__init__()
         | 
| 78 | 
            +
                    if do_convert_rgb and do_convert_grayscale:
         | 
| 79 | 
            +
                        raise ValueError(
         | 
| 80 | 
            +
                            "`do_convert_rgb` and `do_convert_grayscale` can not both be set to `True`,"
         | 
| 81 | 
            +
                            " if you intended to convert the image into RGB format, please set `do_convert_grayscale = False`.",
         | 
| 82 | 
            +
                            " if you intended to convert the image into grayscale format, please set `do_convert_rgb = False`",
         | 
| 83 | 
            +
                        )
         | 
| 84 | 
            +
                        self.config.do_convert_rgb = False
         | 
| 85 | 
            +
             | 
| 86 | 
            +
                @staticmethod
         | 
| 87 | 
            +
                def numpy_to_pil(images: np.ndarray) -> List[PIL.Image.Image]:
         | 
| 88 | 
            +
                    """
         | 
| 89 | 
            +
                    Convert a numpy image or a batch of images to a PIL image.
         | 
| 90 | 
            +
                    """
         | 
| 91 | 
            +
                    if images.ndim == 3:
         | 
| 92 | 
            +
                        images = images[None, ...]
         | 
| 93 | 
            +
                    images = (images * 255).round().astype("uint8")
         | 
| 94 | 
            +
                    if images.shape[-1] == 1:
         | 
| 95 | 
            +
                        # special case for grayscale (single channel) images
         | 
| 96 | 
            +
                        pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
         | 
| 97 | 
            +
                    else:
         | 
| 98 | 
            +
                        pil_images = [Image.fromarray(image) for image in images]
         | 
| 99 | 
            +
             | 
| 100 | 
            +
                    return pil_images
         | 
| 101 | 
            +
             | 
| 102 | 
            +
                @staticmethod
         | 
| 103 | 
            +
                def pil_to_numpy(images: Union[List[PIL.Image.Image], PIL.Image.Image]) -> np.ndarray:
         | 
| 104 | 
            +
                    """
         | 
| 105 | 
            +
                    Convert a PIL image or a list of PIL images to NumPy arrays.
         | 
| 106 | 
            +
                    """
         | 
| 107 | 
            +
                    if not isinstance(images, list):
         | 
| 108 | 
            +
                        images = [images]
         | 
| 109 | 
            +
                    images = [np.array(image).astype(np.float32) / 255.0 for image in images]
         | 
| 110 | 
            +
                    images = np.stack(images, axis=0)
         | 
| 111 | 
            +
             | 
| 112 | 
            +
                    return images
         | 
| 113 | 
            +
             | 
| 114 | 
            +
                @staticmethod
         | 
| 115 | 
            +
                def numpy_to_pt(images: np.ndarray) -> torch.FloatTensor:
         | 
| 116 | 
            +
                    """
         | 
| 117 | 
            +
                    Convert a NumPy image to a PyTorch tensor.
         | 
| 118 | 
            +
                    """
         | 
| 119 | 
            +
                    if images.ndim == 3:
         | 
| 120 | 
            +
                        images = images[..., None]
         | 
| 121 | 
            +
             | 
| 122 | 
            +
                    images = torch.from_numpy(images.transpose(0, 3, 1, 2))
         | 
| 123 | 
            +
                    return images
         | 
| 124 | 
            +
             | 
| 125 | 
            +
                @staticmethod
         | 
| 126 | 
            +
                def pt_to_numpy(images: torch.FloatTensor) -> np.ndarray:
         | 
| 127 | 
            +
                    """
         | 
| 128 | 
            +
                    Convert a PyTorch tensor to a NumPy image.
         | 
| 129 | 
            +
                    """
         | 
| 130 | 
            +
                    images = images.cpu().permute(0, 2, 3, 1).float().numpy()
         | 
| 131 | 
            +
                    return images
         | 
| 132 | 
            +
             | 
| 133 | 
            +
                @staticmethod
         | 
| 134 | 
            +
                def normalize(images: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, torch.Tensor]:
         | 
| 135 | 
            +
                    """
         | 
| 136 | 
            +
                    Normalize an image array to [-1,1].
         | 
| 137 | 
            +
                    """
         | 
| 138 | 
            +
                    return 2.0 * images - 1.0
         | 
| 139 | 
            +
             | 
| 140 | 
            +
                @staticmethod
         | 
| 141 | 
            +
                def denormalize(images: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, torch.Tensor]:
         | 
| 142 | 
            +
                    """
         | 
| 143 | 
            +
                    Denormalize an image array to [0,1].
         | 
| 144 | 
            +
                    """
         | 
| 145 | 
            +
                    return (images / 2 + 0.5).clamp(0, 1)
         | 
| 146 | 
            +
             | 
| 147 | 
            +
                @staticmethod
         | 
| 148 | 
            +
                def convert_to_rgb(image: PIL.Image.Image) -> PIL.Image.Image:
         | 
| 149 | 
            +
                    """
         | 
| 150 | 
            +
                    Converts a PIL image to RGB format.
         | 
| 151 | 
            +
                    """
         | 
| 152 | 
            +
                    image = image.convert("RGB")
         | 
| 153 | 
            +
             | 
| 154 | 
            +
                    return image
         | 
| 155 | 
            +
             | 
| 156 | 
            +
                @staticmethod
         | 
| 157 | 
            +
                def convert_to_grayscale(image: PIL.Image.Image) -> PIL.Image.Image:
         | 
| 158 | 
            +
                    """
         | 
| 159 | 
            +
                    Converts a PIL image to grayscale format.
         | 
| 160 | 
            +
                    """
         | 
| 161 | 
            +
                    image = image.convert("L")
         | 
| 162 | 
            +
             | 
| 163 | 
            +
                    return image
         | 
| 164 | 
            +
             | 
| 165 | 
            +
                @staticmethod
         | 
| 166 | 
            +
                def blur(image: PIL.Image.Image, blur_factor: int = 4) -> PIL.Image.Image:
         | 
| 167 | 
            +
                    """
         | 
| 168 | 
            +
                    Applies Gaussian blur to an image.
         | 
| 169 | 
            +
                    """
         | 
| 170 | 
            +
                    image = image.filter(ImageFilter.GaussianBlur(blur_factor))
         | 
| 171 | 
            +
             | 
| 172 | 
            +
                    return image
         | 
| 173 | 
            +
             | 
| 174 | 
            +
                @staticmethod
         | 
| 175 | 
            +
                def get_crop_region(mask_image: PIL.Image.Image, width: int, height: int, pad=0):
         | 
| 176 | 
            +
                    """
         | 
| 177 | 
            +
                    Finds a rectangular region that contains all masked ares in an image, and expands region to match the aspect ratio of the original image;
         | 
| 178 | 
            +
                    for example, if user drew mask in a 128x32 region, and the dimensions for processing are 512x512, the region will be expanded to 128x128.
         | 
| 179 | 
            +
             | 
| 180 | 
            +
                    Args:
         | 
| 181 | 
            +
                        mask_image (PIL.Image.Image): Mask image.
         | 
| 182 | 
            +
                        width (int): Width of the image to be processed.
         | 
| 183 | 
            +
                        height (int): Height of the image to be processed.
         | 
| 184 | 
            +
                        pad (int, optional): Padding to be added to the crop region. Defaults to 0.
         | 
| 185 | 
            +
             | 
| 186 | 
            +
                    Returns:
         | 
| 187 | 
            +
                        tuple: (x1, y1, x2, y2) represent a rectangular region that contains all masked ares in an image and matches the original aspect ratio.
         | 
| 188 | 
            +
                    """
         | 
| 189 | 
            +
             | 
| 190 | 
            +
                    mask_image = mask_image.convert("L")
         | 
| 191 | 
            +
                    mask = np.array(mask_image)
         | 
| 192 | 
            +
             | 
| 193 | 
            +
                    # 1. find a rectangular region that contains all masked ares in an image
         | 
| 194 | 
            +
                    h, w = mask.shape
         | 
| 195 | 
            +
                    crop_left = 0
         | 
| 196 | 
            +
                    for i in range(w):
         | 
| 197 | 
            +
                        if not (mask[:, i] == 0).all():
         | 
| 198 | 
            +
                            break
         | 
| 199 | 
            +
                        crop_left += 1
         | 
| 200 | 
            +
             | 
| 201 | 
            +
                    crop_right = 0
         | 
| 202 | 
            +
                    for i in reversed(range(w)):
         | 
| 203 | 
            +
                        if not (mask[:, i] == 0).all():
         | 
| 204 | 
            +
                            break
         | 
| 205 | 
            +
                        crop_right += 1
         | 
| 206 | 
            +
             | 
| 207 | 
            +
                    crop_top = 0
         | 
| 208 | 
            +
                    for i in range(h):
         | 
| 209 | 
            +
                        if not (mask[i] == 0).all():
         | 
| 210 | 
            +
                            break
         | 
| 211 | 
            +
                        crop_top += 1
         | 
| 212 | 
            +
             | 
| 213 | 
            +
                    crop_bottom = 0
         | 
| 214 | 
            +
                    for i in reversed(range(h)):
         | 
| 215 | 
            +
                        if not (mask[i] == 0).all():
         | 
| 216 | 
            +
                            break
         | 
| 217 | 
            +
                        crop_bottom += 1
         | 
| 218 | 
            +
             | 
| 219 | 
            +
                    # 2. add padding to the crop region
         | 
| 220 | 
            +
                    x1, y1, x2, y2 = (
         | 
| 221 | 
            +
                        int(max(crop_left - pad, 0)),
         | 
| 222 | 
            +
                        int(max(crop_top - pad, 0)),
         | 
| 223 | 
            +
                        int(min(w - crop_right + pad, w)),
         | 
| 224 | 
            +
                        int(min(h - crop_bottom + pad, h)),
         | 
| 225 | 
            +
                    )
         | 
| 226 | 
            +
             | 
| 227 | 
            +
                    # 3. expands crop region to match the aspect ratio of the image to be processed
         | 
| 228 | 
            +
                    ratio_crop_region = (x2 - x1) / (y2 - y1)
         | 
| 229 | 
            +
                    ratio_processing = width / height
         | 
| 230 | 
            +
             | 
| 231 | 
            +
                    if ratio_crop_region > ratio_processing:
         | 
| 232 | 
            +
                        desired_height = (x2 - x1) / ratio_processing
         | 
| 233 | 
            +
                        desired_height_diff = int(desired_height - (y2 - y1))
         | 
| 234 | 
            +
                        y1 -= desired_height_diff // 2
         | 
| 235 | 
            +
                        y2 += desired_height_diff - desired_height_diff // 2
         | 
| 236 | 
            +
                        if y2 >= mask_image.height:
         | 
| 237 | 
            +
                            diff = y2 - mask_image.height
         | 
| 238 | 
            +
                            y2 -= diff
         | 
| 239 | 
            +
                            y1 -= diff
         | 
| 240 | 
            +
                        if y1 < 0:
         | 
| 241 | 
            +
                            y2 -= y1
         | 
| 242 | 
            +
                            y1 -= y1
         | 
| 243 | 
            +
                        if y2 >= mask_image.height:
         | 
| 244 | 
            +
                            y2 = mask_image.height
         | 
| 245 | 
            +
                    else:
         | 
| 246 | 
            +
                        desired_width = (y2 - y1) * ratio_processing
         | 
| 247 | 
            +
                        desired_width_diff = int(desired_width - (x2 - x1))
         | 
| 248 | 
            +
                        x1 -= desired_width_diff // 2
         | 
| 249 | 
            +
                        x2 += desired_width_diff - desired_width_diff // 2
         | 
| 250 | 
            +
                        if x2 >= mask_image.width:
         | 
| 251 | 
            +
                            diff = x2 - mask_image.width
         | 
| 252 | 
            +
                            x2 -= diff
         | 
| 253 | 
            +
                            x1 -= diff
         | 
| 254 | 
            +
                        if x1 < 0:
         | 
| 255 | 
            +
                            x2 -= x1
         | 
| 256 | 
            +
                            x1 -= x1
         | 
| 257 | 
            +
                        if x2 >= mask_image.width:
         | 
| 258 | 
            +
                            x2 = mask_image.width
         | 
| 259 | 
            +
             | 
| 260 | 
            +
                    return x1, y1, x2, y2
         | 
| 261 | 
            +
             | 
| 262 | 
            +
                def _resize_and_fill(
         | 
| 263 | 
            +
                    self,
         | 
| 264 | 
            +
                    image: PIL.Image.Image,
         | 
| 265 | 
            +
                    width: int,
         | 
| 266 | 
            +
                    height: int,
         | 
| 267 | 
            +
                ) -> PIL.Image.Image:
         | 
| 268 | 
            +
                    """
         | 
| 269 | 
            +
                    Resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, filling empty with data from image.
         | 
| 270 | 
            +
             | 
| 271 | 
            +
                    Args:
         | 
| 272 | 
            +
                        image: The image to resize.
         | 
| 273 | 
            +
                        width: The width to resize the image to.
         | 
| 274 | 
            +
                        height: The height to resize the image to.
         | 
| 275 | 
            +
                    """
         | 
| 276 | 
            +
             | 
| 277 | 
            +
                    ratio = width / height
         | 
| 278 | 
            +
                    src_ratio = image.width / image.height
         | 
| 279 | 
            +
             | 
| 280 | 
            +
                    src_w = width if ratio < src_ratio else image.width * height // image.height
         | 
| 281 | 
            +
                    src_h = height if ratio >= src_ratio else image.height * width // image.width
         | 
| 282 | 
            +
             | 
| 283 | 
            +
                    resized = image.resize((src_w, src_h), resample=PIL_INTERPOLATION["lanczos"])
         | 
| 284 | 
            +
                    res = Image.new("RGB", (width, height))
         | 
| 285 | 
            +
                    res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2))
         | 
| 286 | 
            +
             | 
| 287 | 
            +
                    if ratio < src_ratio:
         | 
| 288 | 
            +
                        fill_height = height // 2 - src_h // 2
         | 
| 289 | 
            +
                        if fill_height > 0:
         | 
| 290 | 
            +
                            res.paste(resized.resize((width, fill_height), box=(0, 0, width, 0)), box=(0, 0))
         | 
| 291 | 
            +
                            res.paste(
         | 
| 292 | 
            +
                                resized.resize((width, fill_height), box=(0, resized.height, width, resized.height)),
         | 
| 293 | 
            +
                                box=(0, fill_height + src_h),
         | 
| 294 | 
            +
                            )
         | 
| 295 | 
            +
                    elif ratio > src_ratio:
         | 
| 296 | 
            +
                        fill_width = width // 2 - src_w // 2
         | 
| 297 | 
            +
                        if fill_width > 0:
         | 
| 298 | 
            +
                            res.paste(resized.resize((fill_width, height), box=(0, 0, 0, height)), box=(0, 0))
         | 
| 299 | 
            +
                            res.paste(
         | 
| 300 | 
            +
                                resized.resize((fill_width, height), box=(resized.width, 0, resized.width, height)),
         | 
| 301 | 
            +
                                box=(fill_width + src_w, 0),
         | 
| 302 | 
            +
                            )
         | 
| 303 | 
            +
             | 
| 304 | 
            +
                    return res
         | 
| 305 | 
            +
             | 
| 306 | 
            +
                def _resize_and_crop(
         | 
| 307 | 
            +
                    self,
         | 
| 308 | 
            +
                    image: PIL.Image.Image,
         | 
| 309 | 
            +
                    width: int,
         | 
| 310 | 
            +
                    height: int,
         | 
| 311 | 
            +
                ) -> PIL.Image.Image:
         | 
| 312 | 
            +
                    """
         | 
| 313 | 
            +
                    Resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, cropping the excess.
         | 
| 314 | 
            +
             | 
| 315 | 
            +
                    Args:
         | 
| 316 | 
            +
                        image: The image to resize.
         | 
| 317 | 
            +
                        width: The width to resize the image to.
         | 
| 318 | 
            +
                        height: The height to resize the image to.
         | 
| 319 | 
            +
                    """
         | 
| 320 | 
            +
                    ratio = width / height
         | 
| 321 | 
            +
                    src_ratio = image.width / image.height
         | 
| 322 | 
            +
             | 
| 323 | 
            +
                    src_w = width if ratio > src_ratio else image.width * height // image.height
         | 
| 324 | 
            +
                    src_h = height if ratio <= src_ratio else image.height * width // image.width
         | 
| 325 | 
            +
             | 
| 326 | 
            +
                    resized = image.resize((src_w, src_h), resample=PIL_INTERPOLATION["lanczos"])
         | 
| 327 | 
            +
                    res = Image.new("RGB", (width, height))
         | 
| 328 | 
            +
                    res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2))
         | 
| 329 | 
            +
                    return res
         | 
| 330 | 
            +
             | 
| 331 | 
            +
                def resize(
         | 
| 332 | 
            +
                    self,
         | 
| 333 | 
            +
                    image: Union[PIL.Image.Image, np.ndarray, torch.Tensor],
         | 
| 334 | 
            +
                    height: int,
         | 
| 335 | 
            +
                    width: int,
         | 
| 336 | 
            +
                    resize_mode: str = "default",  # "default", "fill", "crop"
         | 
| 337 | 
            +
                ) -> Union[PIL.Image.Image, np.ndarray, torch.Tensor]:
         | 
| 338 | 
            +
                    """
         | 
| 339 | 
            +
                    Resize image.
         | 
| 340 | 
            +
             | 
| 341 | 
            +
                    Args:
         | 
| 342 | 
            +
                        image (`PIL.Image.Image`, `np.ndarray` or `torch.Tensor`):
         | 
| 343 | 
            +
                            The image input, can be a PIL image, numpy array or pytorch tensor.
         | 
| 344 | 
            +
                        height (`int`):
         | 
| 345 | 
            +
                            The height to resize to.
         | 
| 346 | 
            +
                        width (`int`):
         | 
| 347 | 
            +
                            The width to resize to.
         | 
| 348 | 
            +
                        resize_mode (`str`, *optional*, defaults to `default`):
         | 
| 349 | 
            +
                            The resize mode to use, can be one of `default` or `fill`. If `default`, will resize the image to fit
         | 
| 350 | 
            +
                            within the specified width and height, and it may not maintaining the original aspect ratio.
         | 
| 351 | 
            +
                            If `fill`, will resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image
         | 
| 352 | 
            +
                            within the dimensions, filling empty with data from image.
         | 
| 353 | 
            +
                            If `crop`, will resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image
         | 
| 354 | 
            +
                            within the dimensions, cropping the excess.
         | 
| 355 | 
            +
                            Note that resize_mode `fill` and `crop` are only supported for PIL image input.
         | 
| 356 | 
            +
             | 
| 357 | 
            +
                    Returns:
         | 
| 358 | 
            +
                        `PIL.Image.Image`, `np.ndarray` or `torch.Tensor`:
         | 
| 359 | 
            +
                            The resized image.
         | 
| 360 | 
            +
                    """
         | 
| 361 | 
            +
                    if resize_mode != "default" and not isinstance(image, PIL.Image.Image):
         | 
| 362 | 
            +
                        raise ValueError(f"Only PIL image input is supported for resize_mode {resize_mode}")
         | 
| 363 | 
            +
                    if isinstance(image, PIL.Image.Image):
         | 
| 364 | 
            +
                        if resize_mode == "default":
         | 
| 365 | 
            +
                            image = image.resize((width, height), resample=PIL_INTERPOLATION[self.config.resample])
         | 
| 366 | 
            +
                        elif resize_mode == "fill":
         | 
| 367 | 
            +
                            image = self._resize_and_fill(image, width, height)
         | 
| 368 | 
            +
                        elif resize_mode == "crop":
         | 
| 369 | 
            +
                            image = self._resize_and_crop(image, width, height)
         | 
| 370 | 
            +
                        else:
         | 
| 371 | 
            +
                            raise ValueError(f"resize_mode {resize_mode} is not supported")
         | 
| 372 | 
            +
             | 
| 373 | 
            +
                    elif isinstance(image, torch.Tensor):
         | 
| 374 | 
            +
                        image = torch.nn.functional.interpolate(
         | 
| 375 | 
            +
                            image,
         | 
| 376 | 
            +
                            size=(height, width),
         | 
| 377 | 
            +
                        )
         | 
| 378 | 
            +
                    elif isinstance(image, np.ndarray):
         | 
| 379 | 
            +
                        image = self.numpy_to_pt(image)
         | 
| 380 | 
            +
                        image = torch.nn.functional.interpolate(
         | 
| 381 | 
            +
                            image,
         | 
| 382 | 
            +
                            size=(height, width),
         | 
| 383 | 
            +
                        )
         | 
| 384 | 
            +
                        image = self.pt_to_numpy(image)
         | 
| 385 | 
            +
                    return image
         | 
| 386 | 
            +
             | 
| 387 | 
            +
                def binarize(self, image: PIL.Image.Image) -> PIL.Image.Image:
         | 
| 388 | 
            +
                    """
         | 
| 389 | 
            +
                    Create a mask.
         | 
| 390 | 
            +
             | 
| 391 | 
            +
                    Args:
         | 
| 392 | 
            +
                        image (`PIL.Image.Image`):
         | 
| 393 | 
            +
                            The image input, should be a PIL image.
         | 
| 394 | 
            +
             | 
| 395 | 
            +
                    Returns:
         | 
| 396 | 
            +
                        `PIL.Image.Image`:
         | 
| 397 | 
            +
                            The binarized image. Values less than 0.5 are set to 0, values greater than 0.5 are set to 1.
         | 
| 398 | 
            +
                    """
         | 
| 399 | 
            +
                    image[image < 0.5] = 0
         | 
| 400 | 
            +
                    image[image >= 0.5] = 1
         | 
| 401 | 
            +
             | 
| 402 | 
            +
                    return image
         | 
| 403 | 
            +
             | 
| 404 | 
            +
                def get_default_height_width(
         | 
| 405 | 
            +
                    self,
         | 
| 406 | 
            +
                    image: Union[PIL.Image.Image, np.ndarray, torch.Tensor],
         | 
| 407 | 
            +
                    height: Optional[int] = None,
         | 
| 408 | 
            +
                    width: Optional[int] = None,
         | 
| 409 | 
            +
                ) -> Tuple[int, int]:
         | 
| 410 | 
            +
                    """
         | 
| 411 | 
            +
                    This function return the height and width that are downscaled to the next integer multiple of
         | 
| 412 | 
            +
                    `vae_scale_factor`.
         | 
| 413 | 
            +
             | 
| 414 | 
            +
                    Args:
         | 
| 415 | 
            +
                        image(`PIL.Image.Image`, `np.ndarray` or `torch.Tensor`):
         | 
| 416 | 
            +
                            The image input, can be a PIL image, numpy array or pytorch tensor. if it is a numpy array, should have
         | 
| 417 | 
            +
                            shape `[batch, height, width]` or `[batch, height, width, channel]` if it is a pytorch tensor, should
         | 
| 418 | 
            +
                            have shape `[batch, channel, height, width]`.
         | 
| 419 | 
            +
                        height (`int`, *optional*, defaults to `None`):
         | 
| 420 | 
            +
                            The height in preprocessed image. If `None`, will use the height of `image` input.
         | 
| 421 | 
            +
                        width (`int`, *optional*`, defaults to `None`):
         | 
| 422 | 
            +
                            The width in preprocessed. If `None`, will use the width of the `image` input.
         | 
| 423 | 
            +
                    """
         | 
| 424 | 
            +
             | 
| 425 | 
            +
                    if height is None:
         | 
| 426 | 
            +
                        if isinstance(image, PIL.Image.Image):
         | 
| 427 | 
            +
                            height = image.height
         | 
| 428 | 
            +
                        elif isinstance(image, torch.Tensor):
         | 
| 429 | 
            +
                            height = image.shape[2]
         | 
| 430 | 
            +
                        else:
         | 
| 431 | 
            +
                            height = image.shape[1]
         | 
| 432 | 
            +
             | 
| 433 | 
            +
                    if width is None:
         | 
| 434 | 
            +
                        if isinstance(image, PIL.Image.Image):
         | 
| 435 | 
            +
                            width = image.width
         | 
| 436 | 
            +
                        elif isinstance(image, torch.Tensor):
         | 
| 437 | 
            +
                            width = image.shape[3]
         | 
| 438 | 
            +
                        else:
         | 
| 439 | 
            +
                            width = image.shape[2]
         | 
| 440 | 
            +
             | 
| 441 | 
            +
                    width, height = (
         | 
| 442 | 
            +
                        x - x % self.config.vae_scale_factor for x in (width, height)
         | 
| 443 | 
            +
                    )  # resize to integer multiple of vae_scale_factor
         | 
| 444 | 
            +
             | 
| 445 | 
            +
                    return height, width
         | 
| 446 | 
            +
             | 
| 447 | 
            +
                def preprocess(
         | 
| 448 | 
            +
                    self,
         | 
| 449 | 
            +
                    image: PipelineImageInput,
         | 
| 450 | 
            +
                    height: Optional[int] = None,
         | 
| 451 | 
            +
                    width: Optional[int] = None,
         | 
| 452 | 
            +
                    resize_mode: str = "default",  # "default", "fill", "crop"
         | 
| 453 | 
            +
                    crops_coords: Optional[Tuple[int, int, int, int]] = None,
         | 
| 454 | 
            +
                ) -> torch.Tensor:
         | 
| 455 | 
            +
                    """
         | 
| 456 | 
            +
                    Preprocess the image input.
         | 
| 457 | 
            +
             | 
| 458 | 
            +
                    Args:
         | 
| 459 | 
            +
                        image (`pipeline_image_input`):
         | 
| 460 | 
            +
                            The image input, accepted formats are PIL images, NumPy arrays, PyTorch tensors; Also accept list of supported formats.
         | 
| 461 | 
            +
                        height (`int`, *optional*, defaults to `None`):
         | 
| 462 | 
            +
                            The height in preprocessed image. If `None`, will use the `get_default_height_width()` to get default height.
         | 
| 463 | 
            +
                        width (`int`, *optional*`, defaults to `None`):
         | 
| 464 | 
            +
                            The width in preprocessed. If `None`, will use  get_default_height_width()` to get the default width.
         | 
| 465 | 
            +
                        resize_mode (`str`, *optional*, defaults to `default`):
         | 
| 466 | 
            +
                            The resize mode, can be one of `default` or `fill`. If `default`, will resize the image to fit
         | 
| 467 | 
            +
                            within the specified width and height, and it may not maintaining the original aspect ratio.
         | 
| 468 | 
            +
                            If `fill`, will resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image
         | 
| 469 | 
            +
                            within the dimensions, filling empty with data from image.
         | 
| 470 | 
            +
                            If `crop`, will resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image
         | 
| 471 | 
            +
                            within the dimensions, cropping the excess.
         | 
| 472 | 
            +
                            Note that resize_mode `fill` and `crop` are only supported for PIL image input.
         | 
| 473 | 
            +
                        crops_coords (`List[Tuple[int, int, int, int]]`, *optional*, defaults to `None`):
         | 
| 474 | 
            +
                            The crop coordinates for each image in the batch. If `None`, will not crop the image.
         | 
| 475 | 
            +
                    """
         | 
| 476 | 
            +
                    supported_formats = (PIL.Image.Image, np.ndarray, torch.Tensor)
         | 
| 477 | 
            +
             | 
| 478 | 
            +
                    # Expand the missing dimension for 3-dimensional pytorch tensor or numpy array that represents grayscale image
         | 
| 479 | 
            +
                    if self.config.do_convert_grayscale and isinstance(image, (torch.Tensor, np.ndarray)) and image.ndim == 3:
         | 
| 480 | 
            +
                        if isinstance(image, torch.Tensor):
         | 
| 481 | 
            +
                            # if image is a pytorch tensor could have 2 possible shapes:
         | 
| 482 | 
            +
                            #    1. batch x height x width: we should insert the channel dimension at position 1
         | 
| 483 | 
            +
                            #    2. channel x height x width: we should insert batch dimension at position 0,
         | 
| 484 | 
            +
                            #       however, since both channel and batch dimension has same size 1, it is same to insert at position 1
         | 
| 485 | 
            +
                            #    for simplicity, we insert a dimension of size 1 at position 1 for both cases
         | 
| 486 | 
            +
                            image = image.unsqueeze(1)
         | 
| 487 | 
            +
                        else:
         | 
| 488 | 
            +
                            # if it is a numpy array, it could have 2 possible shapes:
         | 
| 489 | 
            +
                            #   1. batch x height x width: insert channel dimension on last position
         | 
| 490 | 
            +
                            #   2. height x width x channel: insert batch dimension on first position
         | 
| 491 | 
            +
                            if image.shape[-1] == 1:
         | 
| 492 | 
            +
                                image = np.expand_dims(image, axis=0)
         | 
| 493 | 
            +
                            else:
         | 
| 494 | 
            +
                                image = np.expand_dims(image, axis=-1)
         | 
| 495 | 
            +
             | 
| 496 | 
            +
                    if isinstance(image, supported_formats):
         | 
| 497 | 
            +
                        image = [image]
         | 
| 498 | 
            +
                    elif not (isinstance(image, list) and all(isinstance(i, supported_formats) for i in image)):
         | 
| 499 | 
            +
                        raise ValueError(
         | 
| 500 | 
            +
                            f"Input is in incorrect format: {[type(i) for i in image]}. Currently, we only support {', '.join(supported_formats)}"
         | 
| 501 | 
            +
                        )
         | 
| 502 | 
            +
             | 
| 503 | 
            +
                    if isinstance(image[0], PIL.Image.Image):
         | 
| 504 | 
            +
                        if crops_coords is not None:
         | 
| 505 | 
            +
                            image = [i.crop(crops_coords) for i in image]
         | 
| 506 | 
            +
                        if self.config.do_resize:
         | 
| 507 | 
            +
                            height, width = self.get_default_height_width(image[0], height, width)
         | 
| 508 | 
            +
                            image = [self.resize(i, height, width, resize_mode=resize_mode) for i in image]
         | 
| 509 | 
            +
                        if self.config.do_convert_rgb:
         | 
| 510 | 
            +
                            image = [self.convert_to_rgb(i) for i in image]
         | 
| 511 | 
            +
                        elif self.config.do_convert_grayscale:
         | 
| 512 | 
            +
                            image = [self.convert_to_grayscale(i) for i in image]
         | 
| 513 | 
            +
                        image = self.pil_to_numpy(image)  # to np
         | 
| 514 | 
            +
                        image = self.numpy_to_pt(image)  # to pt
         | 
| 515 | 
            +
             | 
| 516 | 
            +
                    elif isinstance(image[0], np.ndarray):
         | 
| 517 | 
            +
                        image = np.concatenate(image, axis=0) if image[0].ndim == 4 else np.stack(image, axis=0)
         | 
| 518 | 
            +
             | 
| 519 | 
            +
                        image = self.numpy_to_pt(image)
         | 
| 520 | 
            +
             | 
| 521 | 
            +
                        height, width = self.get_default_height_width(image, height, width)
         | 
| 522 | 
            +
                        if self.config.do_resize:
         | 
| 523 | 
            +
                            image = self.resize(image, height, width)
         | 
| 524 | 
            +
             | 
| 525 | 
            +
                    elif isinstance(image[0], torch.Tensor):
         | 
| 526 | 
            +
                        image = torch.cat(image, axis=0) if image[0].ndim == 4 else torch.stack(image, axis=0)
         | 
| 527 | 
            +
             | 
| 528 | 
            +
                        if self.config.do_convert_grayscale and image.ndim == 3:
         | 
| 529 | 
            +
                            image = image.unsqueeze(1)
         | 
| 530 | 
            +
             | 
| 531 | 
            +
                        channel = image.shape[1]
         | 
| 532 | 
            +
                        # don't need any preprocess if the image is latents
         | 
| 533 | 
            +
                        if channel >= 4:
         | 
| 534 | 
            +
                            return image
         | 
| 535 | 
            +
             | 
| 536 | 
            +
                        height, width = self.get_default_height_width(image, height, width)
         | 
| 537 | 
            +
                        if self.config.do_resize:
         | 
| 538 | 
            +
                            image = self.resize(image, height, width)
         | 
| 539 | 
            +
             | 
| 540 | 
            +
                    # expected range [0,1], normalize to [-1,1]
         | 
| 541 | 
            +
                    do_normalize = self.config.do_normalize
         | 
| 542 | 
            +
                    if do_normalize and image.min() < 0:
         | 
| 543 | 
            +
                        warnings.warn(
         | 
| 544 | 
            +
                            "Passing `image` as torch tensor with value range in [-1,1] is deprecated. The expected value range for image tensor is [0,1] "
         | 
| 545 | 
            +
                            f"when passing as pytorch tensor or numpy Array. You passed `image` with value range [{image.min()},{image.max()}]",
         | 
| 546 | 
            +
                            FutureWarning,
         | 
| 547 | 
            +
                        )
         | 
| 548 | 
            +
                        do_normalize = False
         | 
| 549 | 
            +
             | 
| 550 | 
            +
                    if do_normalize:
         | 
| 551 | 
            +
                        image = self.normalize(image)
         | 
| 552 | 
            +
             | 
| 553 | 
            +
                    if self.config.do_binarize:
         | 
| 554 | 
            +
                        image = self.binarize(image)
         | 
| 555 | 
            +
             | 
| 556 | 
            +
                    return image
         | 
| 557 | 
            +
             | 
| 558 | 
            +
                def postprocess(
         | 
| 559 | 
            +
                    self,
         | 
| 560 | 
            +
                    image: torch.FloatTensor,
         | 
| 561 | 
            +
                    output_type: str = "pil",
         | 
| 562 | 
            +
                    do_denormalize: Optional[List[bool]] = None,
         | 
| 563 | 
            +
                ) -> Union[PIL.Image.Image, np.ndarray, torch.FloatTensor]:
         | 
| 564 | 
            +
                    """
         | 
| 565 | 
            +
                    Postprocess the image output from tensor to `output_type`.
         | 
| 566 | 
            +
             | 
| 567 | 
            +
                    Args:
         | 
| 568 | 
            +
                        image (`torch.FloatTensor`):
         | 
| 569 | 
            +
                            The image input, should be a pytorch tensor with shape `B x C x H x W`.
         | 
| 570 | 
            +
                        output_type (`str`, *optional*, defaults to `pil`):
         | 
| 571 | 
            +
                            The output type of the image, can be one of `pil`, `np`, `pt`, `latent`.
         | 
| 572 | 
            +
                        do_denormalize (`List[bool]`, *optional*, defaults to `None`):
         | 
| 573 | 
            +
                            Whether to denormalize the image to [0,1]. If `None`, will use the value of `do_normalize` in the
         | 
| 574 | 
            +
                            `VaeImageProcessor` config.
         | 
| 575 | 
            +
             | 
| 576 | 
            +
                    Returns:
         | 
| 577 | 
            +
                        `PIL.Image.Image`, `np.ndarray` or `torch.FloatTensor`:
         | 
| 578 | 
            +
                            The postprocessed image.
         | 
| 579 | 
            +
                    """
         | 
| 580 | 
            +
                    if not isinstance(image, torch.Tensor):
         | 
| 581 | 
            +
                        raise ValueError(
         | 
| 582 | 
            +
                            f"Input for postprocessing is in incorrect format: {type(image)}. We only support pytorch tensor"
         | 
| 583 | 
            +
                        )
         | 
| 584 | 
            +
                    if output_type not in ["latent", "pt", "np", "pil"]:
         | 
| 585 | 
            +
                        deprecation_message = (
         | 
| 586 | 
            +
                            f"the output_type {output_type} is outdated and has been set to `np`. Please make sure to set it to one of these instead: "
         | 
| 587 | 
            +
                            "`pil`, `np`, `pt`, `latent`"
         | 
| 588 | 
            +
                        )
         | 
| 589 | 
            +
                        deprecate("Unsupported output_type", "1.0.0", deprecation_message, standard_warn=False)
         | 
| 590 | 
            +
                        output_type = "np"
         | 
| 591 | 
            +
             | 
| 592 | 
            +
                    if output_type == "latent":
         | 
| 593 | 
            +
                        return image
         | 
| 594 | 
            +
             | 
| 595 | 
            +
                    if do_denormalize is None:
         | 
| 596 | 
            +
                        do_denormalize = [self.config.do_normalize] * image.shape[0]
         | 
| 597 | 
            +
             | 
| 598 | 
            +
                    image = torch.stack(
         | 
| 599 | 
            +
                        [self.denormalize(image[i]) if do_denormalize[i] else image[i] for i in range(image.shape[0])]
         | 
| 600 | 
            +
                    )
         | 
| 601 | 
            +
             | 
| 602 | 
            +
                    if output_type == "pt":
         | 
| 603 | 
            +
                        return image
         | 
| 604 | 
            +
             | 
| 605 | 
            +
                    image = self.pt_to_numpy(image)
         | 
| 606 | 
            +
             | 
| 607 | 
            +
                    if output_type == "np":
         | 
| 608 | 
            +
                        return image
         | 
| 609 | 
            +
             | 
| 610 | 
            +
                    if output_type == "pil":
         | 
| 611 | 
            +
                        return self.numpy_to_pil(image)
         | 
| 612 | 
            +
             | 
| 613 | 
            +
                def apply_overlay(
         | 
| 614 | 
            +
                    self,
         | 
| 615 | 
            +
                    mask: PIL.Image.Image,
         | 
| 616 | 
            +
                    init_image: PIL.Image.Image,
         | 
| 617 | 
            +
                    image: PIL.Image.Image,
         | 
| 618 | 
            +
                    crop_coords: Optional[Tuple[int, int, int, int]] = None,
         | 
| 619 | 
            +
                ) -> PIL.Image.Image:
         | 
| 620 | 
            +
                    """
         | 
| 621 | 
            +
                    overlay the inpaint output to the original image
         | 
| 622 | 
            +
                    """
         | 
| 623 | 
            +
             | 
| 624 | 
            +
                    width, height = image.width, image.height
         | 
| 625 | 
            +
             | 
| 626 | 
            +
                    init_image = self.resize(init_image, width=width, height=height)
         | 
| 627 | 
            +
                    mask = self.resize(mask, width=width, height=height)
         | 
| 628 | 
            +
             | 
| 629 | 
            +
                    init_image_masked = PIL.Image.new("RGBa", (width, height))
         | 
| 630 | 
            +
                    init_image_masked.paste(init_image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(mask.convert("L")))
         | 
| 631 | 
            +
                    init_image_masked = init_image_masked.convert("RGBA")
         | 
| 632 | 
            +
             | 
| 633 | 
            +
                    if crop_coords is not None:
         | 
| 634 | 
            +
                        x, y, x2, y2 = crop_coords
         | 
| 635 | 
            +
                        w = x2 - x
         | 
| 636 | 
            +
                        h = y2 - y
         | 
| 637 | 
            +
                        base_image = PIL.Image.new("RGBA", (width, height))
         | 
| 638 | 
            +
                        image = self.resize(image, height=h, width=w, resize_mode="crop")
         | 
| 639 | 
            +
                        base_image.paste(image, (x, y))
         | 
| 640 | 
            +
                        image = base_image.convert("RGB")
         | 
| 641 | 
            +
             | 
| 642 | 
            +
                    image = image.convert("RGBA")
         | 
| 643 | 
            +
                    image.alpha_composite(init_image_masked)
         | 
| 644 | 
            +
                    image = image.convert("RGB")
         | 
| 645 | 
            +
             | 
| 646 | 
            +
                    return image
         | 
| 647 | 
            +
             | 
| 648 | 
            +
             | 
| 649 | 
            +
            class VaeImageProcessorLDM3D(VaeImageProcessor):
         | 
| 650 | 
            +
                """
         | 
| 651 | 
            +
                Image processor for VAE LDM3D.
         | 
| 652 | 
            +
             | 
| 653 | 
            +
                Args:
         | 
| 654 | 
            +
                    do_resize (`bool`, *optional*, defaults to `True`):
         | 
| 655 | 
            +
                        Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`.
         | 
| 656 | 
            +
                    vae_scale_factor (`int`, *optional*, defaults to `8`):
         | 
| 657 | 
            +
                        VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor.
         | 
| 658 | 
            +
                    resample (`str`, *optional*, defaults to `lanczos`):
         | 
| 659 | 
            +
                        Resampling filter to use when resizing the image.
         | 
| 660 | 
            +
                    do_normalize (`bool`, *optional*, defaults to `True`):
         | 
| 661 | 
            +
                        Whether to normalize the image to [-1,1].
         | 
| 662 | 
            +
                """
         | 
| 663 | 
            +
             | 
| 664 | 
            +
                config_name = CONFIG_NAME
         | 
| 665 | 
            +
             | 
| 666 | 
            +
                @register_to_config
         | 
| 667 | 
            +
                def __init__(
         | 
| 668 | 
            +
                    self,
         | 
| 669 | 
            +
                    do_resize: bool = True,
         | 
| 670 | 
            +
                    vae_scale_factor: int = 8,
         | 
| 671 | 
            +
                    resample: str = "lanczos",
         | 
| 672 | 
            +
                    do_normalize: bool = True,
         | 
| 673 | 
            +
                ):
         | 
| 674 | 
            +
                    super().__init__()
         | 
| 675 | 
            +
             | 
| 676 | 
            +
                @staticmethod
         | 
| 677 | 
            +
                def numpy_to_pil(images: np.ndarray) -> List[PIL.Image.Image]:
         | 
| 678 | 
            +
                    """
         | 
| 679 | 
            +
                    Convert a NumPy image or a batch of images to a PIL image.
         | 
| 680 | 
            +
                    """
         | 
| 681 | 
            +
                    if images.ndim == 3:
         | 
| 682 | 
            +
                        images = images[None, ...]
         | 
| 683 | 
            +
                    images = (images * 255).round().astype("uint8")
         | 
| 684 | 
            +
                    if images.shape[-1] == 1:
         | 
| 685 | 
            +
                        # special case for grayscale (single channel) images
         | 
| 686 | 
            +
                        pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
         | 
| 687 | 
            +
                    else:
         | 
| 688 | 
            +
                        pil_images = [Image.fromarray(image[:, :, :3]) for image in images]
         | 
| 689 | 
            +
             | 
| 690 | 
            +
                    return pil_images
         | 
| 691 | 
            +
             | 
| 692 | 
            +
                @staticmethod
         | 
| 693 | 
            +
                def depth_pil_to_numpy(images: Union[List[PIL.Image.Image], PIL.Image.Image]) -> np.ndarray:
         | 
| 694 | 
            +
                    """
         | 
| 695 | 
            +
                    Convert a PIL image or a list of PIL images to NumPy arrays.
         | 
| 696 | 
            +
                    """
         | 
| 697 | 
            +
                    if not isinstance(images, list):
         | 
| 698 | 
            +
                        images = [images]
         | 
| 699 | 
            +
             | 
| 700 | 
            +
                    images = [np.array(image).astype(np.float32) / (2**16 - 1) for image in images]
         | 
| 701 | 
            +
                    images = np.stack(images, axis=0)
         | 
| 702 | 
            +
                    return images
         | 
| 703 | 
            +
             | 
| 704 | 
            +
                @staticmethod
         | 
| 705 | 
            +
                def rgblike_to_depthmap(image: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, torch.Tensor]:
         | 
| 706 | 
            +
                    """
         | 
| 707 | 
            +
                    Args:
         | 
| 708 | 
            +
                        image: RGB-like depth image
         | 
| 709 | 
            +
             | 
| 710 | 
            +
                    Returns: depth map
         | 
| 711 | 
            +
             | 
| 712 | 
            +
                    """
         | 
| 713 | 
            +
                    return image[:, :, 1] * 2**8 + image[:, :, 2]
         | 
| 714 | 
            +
             | 
| 715 | 
            +
                def numpy_to_depth(self, images: np.ndarray) -> List[PIL.Image.Image]:
         | 
| 716 | 
            +
                    """
         | 
| 717 | 
            +
                    Convert a NumPy depth image or a batch of images to a PIL image.
         | 
| 718 | 
            +
                    """
         | 
| 719 | 
            +
                    if images.ndim == 3:
         | 
| 720 | 
            +
                        images = images[None, ...]
         | 
| 721 | 
            +
                    images_depth = images[:, :, :, 3:]
         | 
| 722 | 
            +
                    if images.shape[-1] == 6:
         | 
| 723 | 
            +
                        images_depth = (images_depth * 255).round().astype("uint8")
         | 
| 724 | 
            +
                        pil_images = [
         | 
| 725 | 
            +
                            Image.fromarray(self.rgblike_to_depthmap(image_depth), mode="I;16") for image_depth in images_depth
         | 
| 726 | 
            +
                        ]
         | 
| 727 | 
            +
                    elif images.shape[-1] == 4:
         | 
| 728 | 
            +
                        images_depth = (images_depth * 65535.0).astype(np.uint16)
         | 
| 729 | 
            +
                        pil_images = [Image.fromarray(image_depth, mode="I;16") for image_depth in images_depth]
         | 
| 730 | 
            +
                    else:
         | 
| 731 | 
            +
                        raise Exception("Not supported")
         | 
| 732 | 
            +
             | 
| 733 | 
            +
                    return pil_images
         | 
| 734 | 
            +
             | 
| 735 | 
            +
                def postprocess(
         | 
| 736 | 
            +
                    self,
         | 
| 737 | 
            +
                    image: torch.FloatTensor,
         | 
| 738 | 
            +
                    output_type: str = "pil",
         | 
| 739 | 
            +
                    do_denormalize: Optional[List[bool]] = None,
         | 
| 740 | 
            +
                ) -> Union[PIL.Image.Image, np.ndarray, torch.FloatTensor]:
         | 
| 741 | 
            +
                    """
         | 
| 742 | 
            +
                    Postprocess the image output from tensor to `output_type`.
         | 
| 743 | 
            +
             | 
| 744 | 
            +
                    Args:
         | 
| 745 | 
            +
                        image (`torch.FloatTensor`):
         | 
| 746 | 
            +
                            The image input, should be a pytorch tensor with shape `B x C x H x W`.
         | 
| 747 | 
            +
                        output_type (`str`, *optional*, defaults to `pil`):
         | 
| 748 | 
            +
                            The output type of the image, can be one of `pil`, `np`, `pt`, `latent`.
         | 
| 749 | 
            +
                        do_denormalize (`List[bool]`, *optional*, defaults to `None`):
         | 
| 750 | 
            +
                            Whether to denormalize the image to [0,1]. If `None`, will use the value of `do_normalize` in the
         | 
| 751 | 
            +
                            `VaeImageProcessor` config.
         | 
| 752 | 
            +
             | 
| 753 | 
            +
                    Returns:
         | 
| 754 | 
            +
                        `PIL.Image.Image`, `np.ndarray` or `torch.FloatTensor`:
         | 
| 755 | 
            +
                            The postprocessed image.
         | 
| 756 | 
            +
                    """
         | 
| 757 | 
            +
                    if not isinstance(image, torch.Tensor):
         | 
| 758 | 
            +
                        raise ValueError(
         | 
| 759 | 
            +
                            f"Input for postprocessing is in incorrect format: {type(image)}. We only support pytorch tensor"
         | 
| 760 | 
            +
                        )
         | 
| 761 | 
            +
                    if output_type not in ["latent", "pt", "np", "pil"]:
         | 
| 762 | 
            +
                        deprecation_message = (
         | 
| 763 | 
            +
                            f"the output_type {output_type} is outdated and has been set to `np`. Please make sure to set it to one of these instead: "
         | 
| 764 | 
            +
                            "`pil`, `np`, `pt`, `latent`"
         | 
| 765 | 
            +
                        )
         | 
| 766 | 
            +
                        deprecate("Unsupported output_type", "1.0.0", deprecation_message, standard_warn=False)
         | 
| 767 | 
            +
                        output_type = "np"
         | 
| 768 | 
            +
             | 
| 769 | 
            +
                    if do_denormalize is None:
         | 
| 770 | 
            +
                        do_denormalize = [self.config.do_normalize] * image.shape[0]
         | 
| 771 | 
            +
             | 
| 772 | 
            +
                    image = torch.stack(
         | 
| 773 | 
            +
                        [self.denormalize(image[i]) if do_denormalize[i] else image[i] for i in range(image.shape[0])]
         | 
| 774 | 
            +
                    )
         | 
| 775 | 
            +
             | 
| 776 | 
            +
                    image = self.pt_to_numpy(image)
         | 
| 777 | 
            +
             | 
| 778 | 
            +
                    if output_type == "np":
         | 
| 779 | 
            +
                        if image.shape[-1] == 6:
         | 
| 780 | 
            +
                            image_depth = np.stack([self.rgblike_to_depthmap(im[:, :, 3:]) for im in image], axis=0)
         | 
| 781 | 
            +
                        else:
         | 
| 782 | 
            +
                            image_depth = image[:, :, :, 3:]
         | 
| 783 | 
            +
                        return image[:, :, :, :3], image_depth
         | 
| 784 | 
            +
             | 
| 785 | 
            +
                    if output_type == "pil":
         | 
| 786 | 
            +
                        return self.numpy_to_pil(image), self.numpy_to_depth(image)
         | 
| 787 | 
            +
                    else:
         | 
| 788 | 
            +
                        raise Exception(f"This type {output_type} is not supported")
         | 
| 789 | 
            +
             | 
| 790 | 
            +
                def preprocess(
         | 
| 791 | 
            +
                    self,
         | 
| 792 | 
            +
                    rgb: Union[torch.FloatTensor, PIL.Image.Image, np.ndarray],
         | 
| 793 | 
            +
                    depth: Union[torch.FloatTensor, PIL.Image.Image, np.ndarray],
         | 
| 794 | 
            +
                    height: Optional[int] = None,
         | 
| 795 | 
            +
                    width: Optional[int] = None,
         | 
| 796 | 
            +
                    target_res: Optional[int] = None,
         | 
| 797 | 
            +
                ) -> torch.Tensor:
         | 
| 798 | 
            +
                    """
         | 
| 799 | 
            +
                    Preprocess the image input. Accepted formats are PIL images, NumPy arrays or PyTorch tensors.
         | 
| 800 | 
            +
                    """
         | 
| 801 | 
            +
                    supported_formats = (PIL.Image.Image, np.ndarray, torch.Tensor)
         | 
| 802 | 
            +
             | 
| 803 | 
            +
                    # Expand the missing dimension for 3-dimensional pytorch tensor or numpy array that represents grayscale image
         | 
| 804 | 
            +
                    if self.config.do_convert_grayscale and isinstance(rgb, (torch.Tensor, np.ndarray)) and rgb.ndim == 3:
         | 
| 805 | 
            +
                        raise Exception("This is not yet supported")
         | 
| 806 | 
            +
             | 
| 807 | 
            +
                    if isinstance(rgb, supported_formats):
         | 
| 808 | 
            +
                        rgb = [rgb]
         | 
| 809 | 
            +
                        depth = [depth]
         | 
| 810 | 
            +
                    elif not (isinstance(rgb, list) and all(isinstance(i, supported_formats) for i in rgb)):
         | 
| 811 | 
            +
                        raise ValueError(
         | 
| 812 | 
            +
                            f"Input is in incorrect format: {[type(i) for i in rgb]}. Currently, we only support {', '.join(supported_formats)}"
         | 
| 813 | 
            +
                        )
         | 
| 814 | 
            +
             | 
| 815 | 
            +
                    if isinstance(rgb[0], PIL.Image.Image):
         | 
| 816 | 
            +
                        if self.config.do_convert_rgb:
         | 
| 817 | 
            +
                            raise Exception("This is not yet supported")
         | 
| 818 | 
            +
                            # rgb = [self.convert_to_rgb(i) for i in rgb]
         | 
| 819 | 
            +
                            # depth = [self.convert_to_depth(i) for i in depth]  #TODO define convert_to_depth
         | 
| 820 | 
            +
                        if self.config.do_resize or target_res:
         | 
| 821 | 
            +
                            height, width = self.get_default_height_width(rgb[0], height, width) if not target_res else target_res
         | 
| 822 | 
            +
                            rgb = [self.resize(i, height, width) for i in rgb]
         | 
| 823 | 
            +
                            depth = [self.resize(i, height, width) for i in depth]
         | 
| 824 | 
            +
                        rgb = self.pil_to_numpy(rgb)  # to np
         | 
| 825 | 
            +
                        rgb = self.numpy_to_pt(rgb)  # to pt
         | 
| 826 | 
            +
             | 
| 827 | 
            +
                        depth = self.depth_pil_to_numpy(depth)  # to np
         | 
| 828 | 
            +
                        depth = self.numpy_to_pt(depth)  # to pt
         | 
| 829 | 
            +
             | 
| 830 | 
            +
                    elif isinstance(rgb[0], np.ndarray):
         | 
| 831 | 
            +
                        rgb = np.concatenate(rgb, axis=0) if rgb[0].ndim == 4 else np.stack(rgb, axis=0)
         | 
| 832 | 
            +
                        rgb = self.numpy_to_pt(rgb)
         | 
| 833 | 
            +
                        height, width = self.get_default_height_width(rgb, height, width)
         | 
| 834 | 
            +
                        if self.config.do_resize:
         | 
| 835 | 
            +
                            rgb = self.resize(rgb, height, width)
         | 
| 836 | 
            +
             | 
| 837 | 
            +
                        depth = np.concatenate(depth, axis=0) if rgb[0].ndim == 4 else np.stack(depth, axis=0)
         | 
| 838 | 
            +
                        depth = self.numpy_to_pt(depth)
         | 
| 839 | 
            +
                        height, width = self.get_default_height_width(depth, height, width)
         | 
| 840 | 
            +
                        if self.config.do_resize:
         | 
| 841 | 
            +
                            depth = self.resize(depth, height, width)
         | 
| 842 | 
            +
             | 
| 843 | 
            +
                    elif isinstance(rgb[0], torch.Tensor):
         | 
| 844 | 
            +
                        raise Exception("This is not yet supported")
         | 
| 845 | 
            +
                        # rgb = torch.cat(rgb, axis=0) if rgb[0].ndim == 4 else torch.stack(rgb, axis=0)
         | 
| 846 | 
            +
             | 
| 847 | 
            +
                        # if self.config.do_convert_grayscale and rgb.ndim == 3:
         | 
| 848 | 
            +
                        #     rgb = rgb.unsqueeze(1)
         | 
| 849 | 
            +
             | 
| 850 | 
            +
                        # channel = rgb.shape[1]
         | 
| 851 | 
            +
             | 
| 852 | 
            +
                        # height, width = self.get_default_height_width(rgb, height, width)
         | 
| 853 | 
            +
                        # if self.config.do_resize:
         | 
| 854 | 
            +
                        #     rgb = self.resize(rgb, height, width)
         | 
| 855 | 
            +
             | 
| 856 | 
            +
                        # depth = torch.cat(depth, axis=0) if depth[0].ndim == 4 else torch.stack(depth, axis=0)
         | 
| 857 | 
            +
             | 
| 858 | 
            +
                        # if self.config.do_convert_grayscale and depth.ndim == 3:
         | 
| 859 | 
            +
                        #     depth = depth.unsqueeze(1)
         | 
| 860 | 
            +
             | 
| 861 | 
            +
                        # channel = depth.shape[1]
         | 
| 862 | 
            +
                        # # don't need any preprocess if the image is latents
         | 
| 863 | 
            +
                        # if depth == 4:
         | 
| 864 | 
            +
                        #     return rgb, depth
         | 
| 865 | 
            +
             | 
| 866 | 
            +
                        # height, width = self.get_default_height_width(depth, height, width)
         | 
| 867 | 
            +
                        # if self.config.do_resize:
         | 
| 868 | 
            +
                        #     depth = self.resize(depth, height, width)
         | 
| 869 | 
            +
                    # expected range [0,1], normalize to [-1,1]
         | 
| 870 | 
            +
                    do_normalize = self.config.do_normalize
         | 
| 871 | 
            +
                    if rgb.min() < 0 and do_normalize:
         | 
| 872 | 
            +
                        warnings.warn(
         | 
| 873 | 
            +
                            "Passing `image` as torch tensor with value range in [-1,1] is deprecated. The expected value range for image tensor is [0,1] "
         | 
| 874 | 
            +
                            f"when passing as pytorch tensor or numpy Array. You passed `image` with value range [{rgb.min()},{rgb.max()}]",
         | 
| 875 | 
            +
                            FutureWarning,
         | 
| 876 | 
            +
                        )
         | 
| 877 | 
            +
                        do_normalize = False
         | 
| 878 | 
            +
             | 
| 879 | 
            +
                    if do_normalize:
         | 
| 880 | 
            +
                        rgb = self.normalize(rgb)
         | 
| 881 | 
            +
                        depth = self.normalize(depth)
         | 
| 882 | 
            +
             | 
| 883 | 
            +
                    if self.config.do_binarize:
         | 
| 884 | 
            +
                        rgb = self.binarize(rgb)
         | 
| 885 | 
            +
                        depth = self.binarize(depth)
         | 
| 886 | 
            +
             | 
| 887 | 
            +
                    return rgb, depth
         | 
| 888 | 
            +
             | 
| 889 | 
            +
             | 
| 890 | 
            +
            class IPAdapterMaskProcessor(VaeImageProcessor):
         | 
| 891 | 
            +
                """
         | 
| 892 | 
            +
                Image processor for IP Adapter image masks.
         | 
| 893 | 
            +
             | 
| 894 | 
            +
                Args:
         | 
| 895 | 
            +
                    do_resize (`bool`, *optional*, defaults to `True`):
         | 
| 896 | 
            +
                        Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`.
         | 
| 897 | 
            +
                    vae_scale_factor (`int`, *optional*, defaults to `8`):
         | 
| 898 | 
            +
                        VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor.
         | 
| 899 | 
            +
                    resample (`str`, *optional*, defaults to `lanczos`):
         | 
| 900 | 
            +
                        Resampling filter to use when resizing the image.
         | 
| 901 | 
            +
                    do_normalize (`bool`, *optional*, defaults to `False`):
         | 
| 902 | 
            +
                        Whether to normalize the image to [-1,1].
         | 
| 903 | 
            +
                    do_binarize (`bool`, *optional*, defaults to `True`):
         | 
| 904 | 
            +
                        Whether to binarize the image to 0/1.
         | 
| 905 | 
            +
                    do_convert_grayscale (`bool`, *optional*, defaults to be `True`):
         | 
| 906 | 
            +
                        Whether to convert the images to grayscale format.
         | 
| 907 | 
            +
             | 
| 908 | 
            +
                """
         | 
| 909 | 
            +
             | 
| 910 | 
            +
                config_name = CONFIG_NAME
         | 
| 911 | 
            +
             | 
| 912 | 
            +
                @register_to_config
         | 
| 913 | 
            +
                def __init__(
         | 
| 914 | 
            +
                    self,
         | 
| 915 | 
            +
                    do_resize: bool = True,
         | 
| 916 | 
            +
                    vae_scale_factor: int = 8,
         | 
| 917 | 
            +
                    resample: str = "lanczos",
         | 
| 918 | 
            +
                    do_normalize: bool = False,
         | 
| 919 | 
            +
                    do_binarize: bool = True,
         | 
| 920 | 
            +
                    do_convert_grayscale: bool = True,
         | 
| 921 | 
            +
                ):
         | 
| 922 | 
            +
                    super().__init__(
         | 
| 923 | 
            +
                        do_resize=do_resize,
         | 
| 924 | 
            +
                        vae_scale_factor=vae_scale_factor,
         | 
| 925 | 
            +
                        resample=resample,
         | 
| 926 | 
            +
                        do_normalize=do_normalize,
         | 
| 927 | 
            +
                        do_binarize=do_binarize,
         | 
| 928 | 
            +
                        do_convert_grayscale=do_convert_grayscale,
         | 
| 929 | 
            +
                    )
         | 
| 930 | 
            +
             | 
| 931 | 
            +
                @staticmethod
         | 
| 932 | 
            +
                def downsample(mask: torch.FloatTensor, batch_size: int, num_queries: int, value_embed_dim: int):
         | 
| 933 | 
            +
                    """
         | 
| 934 | 
            +
                    Downsamples the provided mask tensor to match the expected dimensions for scaled dot-product attention.
         | 
| 935 | 
            +
                    If the aspect ratio of the mask does not match the aspect ratio of the output image, a warning is issued.
         | 
| 936 | 
            +
             | 
| 937 | 
            +
                    Args:
         | 
| 938 | 
            +
                        mask (`torch.FloatTensor`):
         | 
| 939 | 
            +
                            The input mask tensor generated with `IPAdapterMaskProcessor.preprocess()`.
         | 
| 940 | 
            +
                        batch_size (`int`):
         | 
| 941 | 
            +
                            The batch size.
         | 
| 942 | 
            +
                        num_queries (`int`):
         | 
| 943 | 
            +
                            The number of queries.
         | 
| 944 | 
            +
                        value_embed_dim (`int`):
         | 
| 945 | 
            +
                            The dimensionality of the value embeddings.
         | 
| 946 | 
            +
             | 
| 947 | 
            +
                    Returns:
         | 
| 948 | 
            +
                        `torch.FloatTensor`:
         | 
| 949 | 
            +
                            The downsampled mask tensor.
         | 
| 950 | 
            +
             | 
| 951 | 
            +
                    """
         | 
| 952 | 
            +
                    o_h = mask.shape[1]
         | 
| 953 | 
            +
                    o_w = mask.shape[2]
         | 
| 954 | 
            +
                    ratio = o_w / o_h
         | 
| 955 | 
            +
                    mask_h = int(math.sqrt(num_queries / ratio))
         | 
| 956 | 
            +
                    mask_h = int(mask_h) + int((num_queries % int(mask_h)) != 0)
         | 
| 957 | 
            +
                    mask_w = num_queries // mask_h
         | 
| 958 | 
            +
             | 
| 959 | 
            +
                    mask_downsample = F.interpolate(mask.unsqueeze(0), size=(mask_h, mask_w), mode="bicubic").squeeze(0)
         | 
| 960 | 
            +
             | 
| 961 | 
            +
                    # Repeat batch_size times
         | 
| 962 | 
            +
                    if mask_downsample.shape[0] < batch_size:
         | 
| 963 | 
            +
                        mask_downsample = mask_downsample.repeat(batch_size, 1, 1)
         | 
| 964 | 
            +
             | 
| 965 | 
            +
                    mask_downsample = mask_downsample.view(mask_downsample.shape[0], -1)
         | 
| 966 | 
            +
             | 
| 967 | 
            +
                    downsampled_area = mask_h * mask_w
         | 
| 968 | 
            +
                    # If the output image and the mask do not have the same aspect ratio, tensor shapes will not match
         | 
| 969 | 
            +
                    # Pad tensor if downsampled_mask.shape[1] is smaller than num_queries
         | 
| 970 | 
            +
                    if downsampled_area < num_queries:
         | 
| 971 | 
            +
                        warnings.warn(
         | 
| 972 | 
            +
                            "The aspect ratio of the mask does not match the aspect ratio of the output image. "
         | 
| 973 | 
            +
                            "Please update your masks or adjust the output size for optimal performance.",
         | 
| 974 | 
            +
                            UserWarning,
         | 
| 975 | 
            +
                        )
         | 
| 976 | 
            +
                        mask_downsample = F.pad(mask_downsample, (0, num_queries - mask_downsample.shape[1]), value=0.0)
         | 
| 977 | 
            +
                    # Discard last embeddings if downsampled_mask.shape[1] is bigger than num_queries
         | 
| 978 | 
            +
                    if downsampled_area > num_queries:
         | 
| 979 | 
            +
                        warnings.warn(
         | 
| 980 | 
            +
                            "The aspect ratio of the mask does not match the aspect ratio of the output image. "
         | 
| 981 | 
            +
                            "Please update your masks or adjust the output size for optimal performance.",
         | 
| 982 | 
            +
                            UserWarning,
         | 
| 983 | 
            +
                        )
         | 
| 984 | 
            +
                        mask_downsample = mask_downsample[:, :num_queries]
         | 
| 985 | 
            +
             | 
| 986 | 
            +
                    # Repeat last dimension to match SDPA output shape
         | 
| 987 | 
            +
                    mask_downsample = mask_downsample.view(mask_downsample.shape[0], mask_downsample.shape[1], 1).repeat(
         | 
| 988 | 
            +
                        1, 1, value_embed_dim
         | 
| 989 | 
            +
                    )
         | 
| 990 | 
            +
             | 
| 991 | 
            +
                    return mask_downsample
         | 
    	
        pipeline_controlnet_sd_xl.py
    ADDED
    
    | @@ -0,0 +1,1465 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright 2023 The HuggingFace Team. All rights reserved.
         | 
| 2 | 
            +
            #
         | 
| 3 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 4 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 5 | 
            +
            # You may obtain a copy of the License at
         | 
| 6 | 
            +
            #
         | 
| 7 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 10 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 11 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 12 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 13 | 
            +
            # limitations under the License.
         | 
| 14 | 
            +
             | 
| 15 | 
            +
             | 
| 16 | 
            +
            import inspect
         | 
| 17 | 
            +
            from typing import Any, Callable, Dict, List, Optional, Tuple, Union
         | 
| 18 | 
            +
             | 
| 19 | 
            +
            import numpy as np
         | 
| 20 | 
            +
            import PIL.Image
         | 
| 21 | 
            +
            import torch
         | 
| 22 | 
            +
            import torch.nn.functional as F
         | 
| 23 | 
            +
            from transformers import (
         | 
| 24 | 
            +
                CLIPImageProcessor,
         | 
| 25 | 
            +
                CLIPTextModel,
         | 
| 26 | 
            +
                CLIPTextModelWithProjection,
         | 
| 27 | 
            +
                CLIPTokenizer,
         | 
| 28 | 
            +
                CLIPVisionModelWithProjection,
         | 
| 29 | 
            +
            )
         | 
| 30 | 
            +
             | 
| 31 | 
            +
            from diffusers.utils.import_utils import is_invisible_watermark_available
         | 
| 32 | 
            +
             | 
| 33 | 
            +
            from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
         | 
| 34 | 
            +
            from diffusers.loaders import (
         | 
| 35 | 
            +
                FromSingleFileMixin,
         | 
| 36 | 
            +
                IPAdapterMixin,
         | 
| 37 | 
            +
                StableDiffusionXLLoraLoaderMixin,
         | 
| 38 | 
            +
                TextualInversionLoaderMixin,
         | 
| 39 | 
            +
            )
         | 
| 40 | 
            +
            from controlnet import ControlNetModel
         | 
| 41 | 
            +
            # from diffusers.models import AutoencoderKL, ControlNetModel, ImageProjection, UNet2DConditionModel
         | 
| 42 | 
            +
            from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
         | 
| 43 | 
            +
            from diffusers.models.attention_processor import (
         | 
| 44 | 
            +
                AttnProcessor2_0,
         | 
| 45 | 
            +
                LoRAAttnProcessor2_0,
         | 
| 46 | 
            +
                LoRAXFormersAttnProcessor,
         | 
| 47 | 
            +
                XFormersAttnProcessor,
         | 
| 48 | 
            +
            )
         | 
| 49 | 
            +
            from diffusers.models.lora import adjust_lora_scale_text_encoder
         | 
| 50 | 
            +
            from diffusers.schedulers import KarrasDiffusionSchedulers
         | 
| 51 | 
            +
            from diffusers.utils import (
         | 
| 52 | 
            +
                USE_PEFT_BACKEND,
         | 
| 53 | 
            +
                deprecate,
         | 
| 54 | 
            +
                logging,
         | 
| 55 | 
            +
                replace_example_docstring,
         | 
| 56 | 
            +
                scale_lora_layers,
         | 
| 57 | 
            +
                unscale_lora_layers,
         | 
| 58 | 
            +
            )
         | 
| 59 | 
            +
            from diffusers.utils.torch_utils import is_compiled_module, is_torch_version, randn_tensor
         | 
| 60 | 
            +
            from diffusers.pipelines.pipeline_utils import DiffusionPipeline
         | 
| 61 | 
            +
            from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
         | 
| 62 | 
            +
             | 
| 63 | 
            +
             | 
| 64 | 
            +
            if is_invisible_watermark_available():
         | 
| 65 | 
            +
                from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker
         | 
| 66 | 
            +
             | 
| 67 | 
            +
            from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
         | 
| 68 | 
            +
             | 
| 69 | 
            +
             | 
| 70 | 
            +
            logger = logging.get_logger(__name__)  # pylint: disable=invalid-name
         | 
| 71 | 
            +
             | 
| 72 | 
            +
             | 
| 73 | 
            +
            EXAMPLE_DOC_STRING = """
         | 
| 74 | 
            +
                Examples:
         | 
| 75 | 
            +
                    ```py
         | 
| 76 | 
            +
                    >>> # !pip install opencv-python transformers accelerate
         | 
| 77 | 
            +
                    >>> from diffusers import StableDiffusionXLControlNetPipeline, ControlNetModel, AutoencoderKL
         | 
| 78 | 
            +
                    >>> from diffusers.utils import load_image
         | 
| 79 | 
            +
                    >>> import numpy as np
         | 
| 80 | 
            +
                    >>> import torch
         | 
| 81 | 
            +
             | 
| 82 | 
            +
                    >>> import cv2
         | 
| 83 | 
            +
                    >>> from PIL import Image
         | 
| 84 | 
            +
             | 
| 85 | 
            +
                    >>> prompt = "aerial view, a futuristic research complex in a bright foggy jungle, hard lighting"
         | 
| 86 | 
            +
                    >>> negative_prompt = "low quality, bad quality, sketches"
         | 
| 87 | 
            +
             | 
| 88 | 
            +
                    >>> # download an image
         | 
| 89 | 
            +
                    >>> image = load_image(
         | 
| 90 | 
            +
                    ...     "https://hf.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png"
         | 
| 91 | 
            +
                    ... )
         | 
| 92 | 
            +
             | 
| 93 | 
            +
                    >>> # initialize the models and pipeline
         | 
| 94 | 
            +
                    >>> controlnet_conditioning_scale = 0.5  # recommended for good generalization
         | 
| 95 | 
            +
                    >>> controlnet = ControlNetModel.from_pretrained(
         | 
| 96 | 
            +
                    ...     "diffusers/controlnet-canny-sdxl-1.0", torch_dtype=torch.float16
         | 
| 97 | 
            +
                    ... )
         | 
| 98 | 
            +
                    >>> vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
         | 
| 99 | 
            +
                    >>> pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
         | 
| 100 | 
            +
                    ...     "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, vae=vae, torch_dtype=torch.float16
         | 
| 101 | 
            +
                    ... )
         | 
| 102 | 
            +
                    >>> pipe.enable_model_cpu_offload()
         | 
| 103 | 
            +
             | 
| 104 | 
            +
                    >>> # get canny image
         | 
| 105 | 
            +
                    >>> image = np.array(image)
         | 
| 106 | 
            +
                    >>> image = cv2.Canny(image, 100, 200)
         | 
| 107 | 
            +
                    >>> image = image[:, :, None]
         | 
| 108 | 
            +
                    >>> image = np.concatenate([image, image, image], axis=2)
         | 
| 109 | 
            +
                    >>> canny_image = Image.fromarray(image)
         | 
| 110 | 
            +
             | 
| 111 | 
            +
                    >>> # generate image
         | 
| 112 | 
            +
                    >>> image = pipe(
         | 
| 113 | 
            +
                    ...     prompt, controlnet_conditioning_scale=controlnet_conditioning_scale, image=canny_image
         | 
| 114 | 
            +
                    ... ).images[0]
         | 
| 115 | 
            +
                    ```
         | 
| 116 | 
            +
            """
         | 
| 117 | 
            +
             | 
| 118 | 
            +
             | 
| 119 | 
            +
            class StableDiffusionXLControlNetPipeline(
         | 
| 120 | 
            +
                DiffusionPipeline,
         | 
| 121 | 
            +
                TextualInversionLoaderMixin,
         | 
| 122 | 
            +
                StableDiffusionXLLoraLoaderMixin,
         | 
| 123 | 
            +
                IPAdapterMixin,
         | 
| 124 | 
            +
                FromSingleFileMixin,
         | 
| 125 | 
            +
            ):
         | 
| 126 | 
            +
                r"""
         | 
| 127 | 
            +
                Pipeline for text-to-image generation using Stable Diffusion XL with ControlNet guidance.
         | 
| 128 | 
            +
             | 
| 129 | 
            +
                This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
         | 
| 130 | 
            +
                implemented for all pipelines (downloading, saving, running on a particular device, etc.).
         | 
| 131 | 
            +
             | 
| 132 | 
            +
                The pipeline also inherits the following loading methods:
         | 
| 133 | 
            +
                    - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
         | 
| 134 | 
            +
                    - [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
         | 
| 135 | 
            +
                    - [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
         | 
| 136 | 
            +
                    - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
         | 
| 137 | 
            +
                    - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
         | 
| 138 | 
            +
             | 
| 139 | 
            +
                Args:
         | 
| 140 | 
            +
                    vae ([`AutoencoderKL`]):
         | 
| 141 | 
            +
                        Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
         | 
| 142 | 
            +
                    text_encoder ([`~transformers.CLIPTextModel`]):
         | 
| 143 | 
            +
                        Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
         | 
| 144 | 
            +
                    text_encoder_2 ([`~transformers.CLIPTextModelWithProjection`]):
         | 
| 145 | 
            +
                        Second frozen text-encoder
         | 
| 146 | 
            +
                        ([laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)).
         | 
| 147 | 
            +
                    tokenizer ([`~transformers.CLIPTokenizer`]):
         | 
| 148 | 
            +
                        A `CLIPTokenizer` to tokenize text.
         | 
| 149 | 
            +
                    tokenizer_2 ([`~transformers.CLIPTokenizer`]):
         | 
| 150 | 
            +
                        A `CLIPTokenizer` to tokenize text.
         | 
| 151 | 
            +
                    unet ([`UNet2DConditionModel`]):
         | 
| 152 | 
            +
                        A `UNet2DConditionModel` to denoise the encoded image latents.
         | 
| 153 | 
            +
                    controlnet ([`ControlNetModel`] or `List[ControlNetModel]`):
         | 
| 154 | 
            +
                        Provides additional conditioning to the `unet` during the denoising process. If you set multiple
         | 
| 155 | 
            +
                        ControlNets as a list, the outputs from each ControlNet are added together to create one combined
         | 
| 156 | 
            +
                        additional conditioning.
         | 
| 157 | 
            +
                    scheduler ([`SchedulerMixin`]):
         | 
| 158 | 
            +
                        A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
         | 
| 159 | 
            +
                        [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
         | 
| 160 | 
            +
                    force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
         | 
| 161 | 
            +
                        Whether the negative prompt embeddings should always be set to 0. Also see the config of
         | 
| 162 | 
            +
                        `stabilityai/stable-diffusion-xl-base-1-0`.
         | 
| 163 | 
            +
                    add_watermarker (`bool`, *optional*):
         | 
| 164 | 
            +
                        Whether to use the [invisible_watermark](https://github.com/ShieldMnt/invisible-watermark/) library to
         | 
| 165 | 
            +
                        watermark output images. If not defined, it defaults to `True` if the package is installed; otherwise no
         | 
| 166 | 
            +
                        watermarker is used.
         | 
| 167 | 
            +
                """
         | 
| 168 | 
            +
             | 
| 169 | 
            +
                # leave controlnet out on purpose because it iterates with unet
         | 
| 170 | 
            +
                model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->unet->vae"
         | 
| 171 | 
            +
                _optional_components = [
         | 
| 172 | 
            +
                    "tokenizer",
         | 
| 173 | 
            +
                    "tokenizer_2",
         | 
| 174 | 
            +
                    "text_encoder",
         | 
| 175 | 
            +
                    "text_encoder_2",
         | 
| 176 | 
            +
                    "feature_extractor",
         | 
| 177 | 
            +
                    "image_encoder",
         | 
| 178 | 
            +
                ]
         | 
| 179 | 
            +
                _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
         | 
| 180 | 
            +
             | 
| 181 | 
            +
                def __init__(
         | 
| 182 | 
            +
                    self,
         | 
| 183 | 
            +
                    vae: AutoencoderKL,
         | 
| 184 | 
            +
                    text_encoder: CLIPTextModel,
         | 
| 185 | 
            +
                    text_encoder_2: CLIPTextModelWithProjection,
         | 
| 186 | 
            +
                    tokenizer: CLIPTokenizer,
         | 
| 187 | 
            +
                    tokenizer_2: CLIPTokenizer,
         | 
| 188 | 
            +
                    unet: UNet2DConditionModel,
         | 
| 189 | 
            +
                    controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel],
         | 
| 190 | 
            +
                    scheduler: KarrasDiffusionSchedulers,
         | 
| 191 | 
            +
                    force_zeros_for_empty_prompt: bool = True,
         | 
| 192 | 
            +
                    add_watermarker: Optional[bool] = None,
         | 
| 193 | 
            +
                    feature_extractor: CLIPImageProcessor = None,
         | 
| 194 | 
            +
                    image_encoder: CLIPVisionModelWithProjection = None,
         | 
| 195 | 
            +
                ):
         | 
| 196 | 
            +
                    super().__init__()
         | 
| 197 | 
            +
             | 
| 198 | 
            +
                    if isinstance(controlnet, (list, tuple)):
         | 
| 199 | 
            +
                        controlnet = MultiControlNetModel(controlnet)
         | 
| 200 | 
            +
             | 
| 201 | 
            +
                    self.register_modules(
         | 
| 202 | 
            +
                        vae=vae,
         | 
| 203 | 
            +
                        text_encoder=text_encoder,
         | 
| 204 | 
            +
                        text_encoder_2=text_encoder_2,
         | 
| 205 | 
            +
                        tokenizer=tokenizer,
         | 
| 206 | 
            +
                        tokenizer_2=tokenizer_2,
         | 
| 207 | 
            +
                        unet=unet,
         | 
| 208 | 
            +
                        controlnet=controlnet,
         | 
| 209 | 
            +
                        scheduler=scheduler,
         | 
| 210 | 
            +
                        feature_extractor=feature_extractor,
         | 
| 211 | 
            +
                        image_encoder=image_encoder,
         | 
| 212 | 
            +
                    )
         | 
| 213 | 
            +
                    self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
         | 
| 214 | 
            +
                    self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True)
         | 
| 215 | 
            +
                    self.control_image_processor = VaeImageProcessor(
         | 
| 216 | 
            +
                        vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
         | 
| 217 | 
            +
                    )
         | 
| 218 | 
            +
                    add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available()
         | 
| 219 | 
            +
             | 
| 220 | 
            +
                    if add_watermarker:
         | 
| 221 | 
            +
                        self.watermark = StableDiffusionXLWatermarker()
         | 
| 222 | 
            +
                    else:
         | 
| 223 | 
            +
                        self.watermark = None
         | 
| 224 | 
            +
             | 
| 225 | 
            +
                    self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
         | 
| 226 | 
            +
             | 
| 227 | 
            +
                # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
         | 
| 228 | 
            +
                def enable_vae_slicing(self):
         | 
| 229 | 
            +
                    r"""
         | 
| 230 | 
            +
                    Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
         | 
| 231 | 
            +
                    compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
         | 
| 232 | 
            +
                    """
         | 
| 233 | 
            +
                    self.vae.enable_slicing()
         | 
| 234 | 
            +
             | 
| 235 | 
            +
                # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
         | 
| 236 | 
            +
                def disable_vae_slicing(self):
         | 
| 237 | 
            +
                    r"""
         | 
| 238 | 
            +
                    Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
         | 
| 239 | 
            +
                    computing decoding in one step.
         | 
| 240 | 
            +
                    """
         | 
| 241 | 
            +
                    self.vae.disable_slicing()
         | 
| 242 | 
            +
             | 
| 243 | 
            +
                # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
         | 
| 244 | 
            +
                def enable_vae_tiling(self):
         | 
| 245 | 
            +
                    r"""
         | 
| 246 | 
            +
                    Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
         | 
| 247 | 
            +
                    compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
         | 
| 248 | 
            +
                    processing larger images.
         | 
| 249 | 
            +
                    """
         | 
| 250 | 
            +
                    self.vae.enable_tiling()
         | 
| 251 | 
            +
             | 
| 252 | 
            +
                # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
         | 
| 253 | 
            +
                def disable_vae_tiling(self):
         | 
| 254 | 
            +
                    r"""
         | 
| 255 | 
            +
                    Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
         | 
| 256 | 
            +
                    computing decoding in one step.
         | 
| 257 | 
            +
                    """
         | 
| 258 | 
            +
                    self.vae.disable_tiling()
         | 
| 259 | 
            +
             | 
| 260 | 
            +
                # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt
         | 
| 261 | 
            +
                def encode_prompt(
         | 
| 262 | 
            +
                    self,
         | 
| 263 | 
            +
                    prompt: str,
         | 
| 264 | 
            +
                    prompt_2: Optional[str] = None,
         | 
| 265 | 
            +
                    device: Optional[torch.device] = None,
         | 
| 266 | 
            +
                    num_images_per_prompt: int = 1,
         | 
| 267 | 
            +
                    do_classifier_free_guidance: bool = True,
         | 
| 268 | 
            +
                    negative_prompt: Optional[str] = None,
         | 
| 269 | 
            +
                    negative_prompt_2: Optional[str] = None,
         | 
| 270 | 
            +
                    prompt_embeds: Optional[torch.FloatTensor] = None,
         | 
| 271 | 
            +
                    negative_prompt_embeds: Optional[torch.FloatTensor] = None,
         | 
| 272 | 
            +
                    pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
         | 
| 273 | 
            +
                    negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
         | 
| 274 | 
            +
                    lora_scale: Optional[float] = None,
         | 
| 275 | 
            +
                    clip_skip: Optional[int] = None,
         | 
| 276 | 
            +
                ):
         | 
| 277 | 
            +
                    r"""
         | 
| 278 | 
            +
                    Encodes the prompt into text encoder hidden states.
         | 
| 279 | 
            +
             | 
| 280 | 
            +
                    Args:
         | 
| 281 | 
            +
                        prompt (`str` or `List[str]`, *optional*):
         | 
| 282 | 
            +
                            prompt to be encoded
         | 
| 283 | 
            +
                        prompt_2 (`str` or `List[str]`, *optional*):
         | 
| 284 | 
            +
                            The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
         | 
| 285 | 
            +
                            used in both text-encoders
         | 
| 286 | 
            +
                        device: (`torch.device`):
         | 
| 287 | 
            +
                            torch device
         | 
| 288 | 
            +
                        num_images_per_prompt (`int`):
         | 
| 289 | 
            +
                            number of images that should be generated per prompt
         | 
| 290 | 
            +
                        do_classifier_free_guidance (`bool`):
         | 
| 291 | 
            +
                            whether to use classifier free guidance or not
         | 
| 292 | 
            +
                        negative_prompt (`str` or `List[str]`, *optional*):
         | 
| 293 | 
            +
                            The prompt or prompts not to guide the image generation. If not defined, one has to pass
         | 
| 294 | 
            +
                            `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
         | 
| 295 | 
            +
                            less than `1`).
         | 
| 296 | 
            +
                        negative_prompt_2 (`str` or `List[str]`, *optional*):
         | 
| 297 | 
            +
                            The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
         | 
| 298 | 
            +
                            `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
         | 
| 299 | 
            +
                        prompt_embeds (`torch.FloatTensor`, *optional*):
         | 
| 300 | 
            +
                            Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
         | 
| 301 | 
            +
                            provided, text embeddings will be generated from `prompt` input argument.
         | 
| 302 | 
            +
                        negative_prompt_embeds (`torch.FloatTensor`, *optional*):
         | 
| 303 | 
            +
                            Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
         | 
| 304 | 
            +
                            weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
         | 
| 305 | 
            +
                            argument.
         | 
| 306 | 
            +
                        pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
         | 
| 307 | 
            +
                            Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
         | 
| 308 | 
            +
                            If not provided, pooled text embeddings will be generated from `prompt` input argument.
         | 
| 309 | 
            +
                        negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
         | 
| 310 | 
            +
                            Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
         | 
| 311 | 
            +
                            weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
         | 
| 312 | 
            +
                            input argument.
         | 
| 313 | 
            +
                        lora_scale (`float`, *optional*):
         | 
| 314 | 
            +
                            A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
         | 
| 315 | 
            +
                        clip_skip (`int`, *optional*):
         | 
| 316 | 
            +
                            Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
         | 
| 317 | 
            +
                            the output of the pre-final layer will be used for computing the prompt embeddings.
         | 
| 318 | 
            +
                    """
         | 
| 319 | 
            +
                    device = device or self._execution_device
         | 
| 320 | 
            +
             | 
| 321 | 
            +
                    # set lora scale so that monkey patched LoRA
         | 
| 322 | 
            +
                    # function of text encoder can correctly access it
         | 
| 323 | 
            +
                    if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin):
         | 
| 324 | 
            +
                        self._lora_scale = lora_scale
         | 
| 325 | 
            +
             | 
| 326 | 
            +
                        # dynamically adjust the LoRA scale
         | 
| 327 | 
            +
                        if self.text_encoder is not None:
         | 
| 328 | 
            +
                            if not USE_PEFT_BACKEND:
         | 
| 329 | 
            +
                                adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
         | 
| 330 | 
            +
                            else:
         | 
| 331 | 
            +
                                scale_lora_layers(self.text_encoder, lora_scale)
         | 
| 332 | 
            +
             | 
| 333 | 
            +
                        if self.text_encoder_2 is not None:
         | 
| 334 | 
            +
                            if not USE_PEFT_BACKEND:
         | 
| 335 | 
            +
                                adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale)
         | 
| 336 | 
            +
                            else:
         | 
| 337 | 
            +
                                scale_lora_layers(self.text_encoder_2, lora_scale)
         | 
| 338 | 
            +
             | 
| 339 | 
            +
                    prompt = [prompt] if isinstance(prompt, str) else prompt
         | 
| 340 | 
            +
             | 
| 341 | 
            +
                    if prompt is not None:
         | 
| 342 | 
            +
                        batch_size = len(prompt)
         | 
| 343 | 
            +
                    else:
         | 
| 344 | 
            +
                        batch_size = prompt_embeds.shape[0]
         | 
| 345 | 
            +
             | 
| 346 | 
            +
                    # Define tokenizers and text encoders
         | 
| 347 | 
            +
                    tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
         | 
| 348 | 
            +
                    text_encoders = (
         | 
| 349 | 
            +
                        [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
         | 
| 350 | 
            +
                    )
         | 
| 351 | 
            +
             | 
| 352 | 
            +
                    if prompt_embeds is None:
         | 
| 353 | 
            +
                        prompt_2 = prompt_2 or prompt
         | 
| 354 | 
            +
                        prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
         | 
| 355 | 
            +
             | 
| 356 | 
            +
                        # textual inversion: procecss multi-vector tokens if necessary
         | 
| 357 | 
            +
                        prompt_embeds_list = []
         | 
| 358 | 
            +
                        prompts = [prompt, prompt_2]
         | 
| 359 | 
            +
                        for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
         | 
| 360 | 
            +
                            if isinstance(self, TextualInversionLoaderMixin):
         | 
| 361 | 
            +
                                prompt = self.maybe_convert_prompt(prompt, tokenizer)
         | 
| 362 | 
            +
             | 
| 363 | 
            +
                            text_inputs = tokenizer(
         | 
| 364 | 
            +
                                prompt,
         | 
| 365 | 
            +
                                padding="max_length",
         | 
| 366 | 
            +
                                max_length=tokenizer.model_max_length,
         | 
| 367 | 
            +
                                truncation=True,
         | 
| 368 | 
            +
                                return_tensors="pt",
         | 
| 369 | 
            +
                            )
         | 
| 370 | 
            +
             | 
| 371 | 
            +
                            text_input_ids = text_inputs.input_ids
         | 
| 372 | 
            +
                            untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
         | 
| 373 | 
            +
             | 
| 374 | 
            +
                            if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
         | 
| 375 | 
            +
                                text_input_ids, untruncated_ids
         | 
| 376 | 
            +
                            ):
         | 
| 377 | 
            +
                                removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
         | 
| 378 | 
            +
                                logger.warning(
         | 
| 379 | 
            +
                                    "The following part of your input was truncated because CLIP can only handle sequences up to"
         | 
| 380 | 
            +
                                    f" {tokenizer.model_max_length} tokens: {removed_text}"
         | 
| 381 | 
            +
                                )
         | 
| 382 | 
            +
             | 
| 383 | 
            +
                            prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
         | 
| 384 | 
            +
             | 
| 385 | 
            +
                            # We are only ALWAYS interested in the pooled output of the final text encoder
         | 
| 386 | 
            +
                            pooled_prompt_embeds = prompt_embeds[0]
         | 
| 387 | 
            +
                            if clip_skip is None:
         | 
| 388 | 
            +
                                prompt_embeds = prompt_embeds.hidden_states[-2]
         | 
| 389 | 
            +
                            else:
         | 
| 390 | 
            +
                                # "2" because SDXL always indexes from the penultimate layer.
         | 
| 391 | 
            +
                                prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]
         | 
| 392 | 
            +
             | 
| 393 | 
            +
                            prompt_embeds_list.append(prompt_embeds)
         | 
| 394 | 
            +
             | 
| 395 | 
            +
                        prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
         | 
| 396 | 
            +
             | 
| 397 | 
            +
                    # get unconditional embeddings for classifier free guidance
         | 
| 398 | 
            +
                    zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
         | 
| 399 | 
            +
                    if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
         | 
| 400 | 
            +
                        negative_prompt_embeds = torch.zeros_like(prompt_embeds)
         | 
| 401 | 
            +
                        negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
         | 
| 402 | 
            +
                    elif do_classifier_free_guidance and negative_prompt_embeds is None:
         | 
| 403 | 
            +
                        negative_prompt = negative_prompt or ""
         | 
| 404 | 
            +
                        negative_prompt_2 = negative_prompt_2 or negative_prompt
         | 
| 405 | 
            +
             | 
| 406 | 
            +
                        # normalize str to list
         | 
| 407 | 
            +
                        negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
         | 
| 408 | 
            +
                        negative_prompt_2 = (
         | 
| 409 | 
            +
                            batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
         | 
| 410 | 
            +
                        )
         | 
| 411 | 
            +
             | 
| 412 | 
            +
                        uncond_tokens: List[str]
         | 
| 413 | 
            +
                        if prompt is not None and type(prompt) is not type(negative_prompt):
         | 
| 414 | 
            +
                            raise TypeError(
         | 
| 415 | 
            +
                                f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
         | 
| 416 | 
            +
                                f" {type(prompt)}."
         | 
| 417 | 
            +
                            )
         | 
| 418 | 
            +
                        elif batch_size != len(negative_prompt):
         | 
| 419 | 
            +
                            raise ValueError(
         | 
| 420 | 
            +
                                f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
         | 
| 421 | 
            +
                                f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
         | 
| 422 | 
            +
                                " the batch size of `prompt`."
         | 
| 423 | 
            +
                            )
         | 
| 424 | 
            +
                        else:
         | 
| 425 | 
            +
                            uncond_tokens = [negative_prompt, negative_prompt_2]
         | 
| 426 | 
            +
             | 
| 427 | 
            +
                        negative_prompt_embeds_list = []
         | 
| 428 | 
            +
                        for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
         | 
| 429 | 
            +
                            if isinstance(self, TextualInversionLoaderMixin):
         | 
| 430 | 
            +
                                negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)
         | 
| 431 | 
            +
             | 
| 432 | 
            +
                            max_length = prompt_embeds.shape[1]
         | 
| 433 | 
            +
                            uncond_input = tokenizer(
         | 
| 434 | 
            +
                                negative_prompt,
         | 
| 435 | 
            +
                                padding="max_length",
         | 
| 436 | 
            +
                                max_length=max_length,
         | 
| 437 | 
            +
                                truncation=True,
         | 
| 438 | 
            +
                                return_tensors="pt",
         | 
| 439 | 
            +
                            )
         | 
| 440 | 
            +
             | 
| 441 | 
            +
                            negative_prompt_embeds = text_encoder(
         | 
| 442 | 
            +
                                uncond_input.input_ids.to(device),
         | 
| 443 | 
            +
                                output_hidden_states=True,
         | 
| 444 | 
            +
                            )
         | 
| 445 | 
            +
                            # We are only ALWAYS interested in the pooled output of the final text encoder
         | 
| 446 | 
            +
                            negative_pooled_prompt_embeds = negative_prompt_embeds[0]
         | 
| 447 | 
            +
                            negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
         | 
| 448 | 
            +
             | 
| 449 | 
            +
                            negative_prompt_embeds_list.append(negative_prompt_embeds)
         | 
| 450 | 
            +
             | 
| 451 | 
            +
                        negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
         | 
| 452 | 
            +
             | 
| 453 | 
            +
                    if self.text_encoder_2 is not None:
         | 
| 454 | 
            +
                        prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
         | 
| 455 | 
            +
                    else:
         | 
| 456 | 
            +
                        prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device)
         | 
| 457 | 
            +
             | 
| 458 | 
            +
                    bs_embed, seq_len, _ = prompt_embeds.shape
         | 
| 459 | 
            +
                    # duplicate text embeddings for each generation per prompt, using mps friendly method
         | 
| 460 | 
            +
                    prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
         | 
| 461 | 
            +
                    prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
         | 
| 462 | 
            +
             | 
| 463 | 
            +
                    if do_classifier_free_guidance:
         | 
| 464 | 
            +
                        # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
         | 
| 465 | 
            +
                        seq_len = negative_prompt_embeds.shape[1]
         | 
| 466 | 
            +
             | 
| 467 | 
            +
                        if self.text_encoder_2 is not None:
         | 
| 468 | 
            +
                            negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
         | 
| 469 | 
            +
                        else:
         | 
| 470 | 
            +
                            negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device)
         | 
| 471 | 
            +
             | 
| 472 | 
            +
                        negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
         | 
| 473 | 
            +
                        negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
         | 
| 474 | 
            +
             | 
| 475 | 
            +
                    pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
         | 
| 476 | 
            +
                        bs_embed * num_images_per_prompt, -1
         | 
| 477 | 
            +
                    )
         | 
| 478 | 
            +
                    if do_classifier_free_guidance:
         | 
| 479 | 
            +
                        negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
         | 
| 480 | 
            +
                            bs_embed * num_images_per_prompt, -1
         | 
| 481 | 
            +
                        )
         | 
| 482 | 
            +
             | 
| 483 | 
            +
                    if self.text_encoder is not None:
         | 
| 484 | 
            +
                        if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
         | 
| 485 | 
            +
                            # Retrieve the original scale by scaling back the LoRA layers
         | 
| 486 | 
            +
                            unscale_lora_layers(self.text_encoder, lora_scale)
         | 
| 487 | 
            +
             | 
| 488 | 
            +
                    if self.text_encoder_2 is not None:
         | 
| 489 | 
            +
                        if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
         | 
| 490 | 
            +
                            # Retrieve the original scale by scaling back the LoRA layers
         | 
| 491 | 
            +
                            unscale_lora_layers(self.text_encoder_2, lora_scale)
         | 
| 492 | 
            +
             | 
| 493 | 
            +
                    return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
         | 
| 494 | 
            +
             | 
| 495 | 
            +
                # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
         | 
| 496 | 
            +
                def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
         | 
| 497 | 
            +
                    dtype = next(self.image_encoder.parameters()).dtype
         | 
| 498 | 
            +
             | 
| 499 | 
            +
                    if not isinstance(image, torch.Tensor):
         | 
| 500 | 
            +
                        image = self.feature_extractor(image, return_tensors="pt").pixel_values
         | 
| 501 | 
            +
             | 
| 502 | 
            +
                    image = image.to(device=device, dtype=dtype)
         | 
| 503 | 
            +
                    if output_hidden_states:
         | 
| 504 | 
            +
                        image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
         | 
| 505 | 
            +
                        image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
         | 
| 506 | 
            +
                        uncond_image_enc_hidden_states = self.image_encoder(
         | 
| 507 | 
            +
                            torch.zeros_like(image), output_hidden_states=True
         | 
| 508 | 
            +
                        ).hidden_states[-2]
         | 
| 509 | 
            +
                        uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
         | 
| 510 | 
            +
                            num_images_per_prompt, dim=0
         | 
| 511 | 
            +
                        )
         | 
| 512 | 
            +
                        return image_enc_hidden_states, uncond_image_enc_hidden_states
         | 
| 513 | 
            +
                    else:
         | 
| 514 | 
            +
                        image_embeds = self.image_encoder(image).image_embeds
         | 
| 515 | 
            +
                        image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
         | 
| 516 | 
            +
                        uncond_image_embeds = torch.zeros_like(image_embeds)
         | 
| 517 | 
            +
             | 
| 518 | 
            +
                        return image_embeds, uncond_image_embeds
         | 
| 519 | 
            +
             | 
| 520 | 
            +
                # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
         | 
| 521 | 
            +
                def prepare_ip_adapter_image_embeds(self, ip_adapter_image, device, num_images_per_prompt):
         | 
| 522 | 
            +
                    if not isinstance(ip_adapter_image, list):
         | 
| 523 | 
            +
                        ip_adapter_image = [ip_adapter_image]
         | 
| 524 | 
            +
             | 
| 525 | 
            +
                    if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
         | 
| 526 | 
            +
                        raise ValueError(
         | 
| 527 | 
            +
                            f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
         | 
| 528 | 
            +
                        )
         | 
| 529 | 
            +
             | 
| 530 | 
            +
                    image_embeds = []
         | 
| 531 | 
            +
                    for single_ip_adapter_image, image_proj_layer in zip(
         | 
| 532 | 
            +
                        ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
         | 
| 533 | 
            +
                    ):
         | 
| 534 | 
            +
                        output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
         | 
| 535 | 
            +
                        single_image_embeds, single_negative_image_embeds = self.encode_image(
         | 
| 536 | 
            +
                            single_ip_adapter_image, device, 1, output_hidden_state
         | 
| 537 | 
            +
                        )
         | 
| 538 | 
            +
                        single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
         | 
| 539 | 
            +
                        single_negative_image_embeds = torch.stack([single_negative_image_embeds] * num_images_per_prompt, dim=0)
         | 
| 540 | 
            +
             | 
| 541 | 
            +
                        if self.do_classifier_free_guidance:
         | 
| 542 | 
            +
                            single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
         | 
| 543 | 
            +
                            single_image_embeds = single_image_embeds.to(device)
         | 
| 544 | 
            +
             | 
| 545 | 
            +
                        image_embeds.append(single_image_embeds)
         | 
| 546 | 
            +
             | 
| 547 | 
            +
                    return image_embeds
         | 
| 548 | 
            +
             | 
| 549 | 
            +
                # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
         | 
| 550 | 
            +
                def prepare_extra_step_kwargs(self, generator, eta):
         | 
| 551 | 
            +
                    # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
         | 
| 552 | 
            +
                    # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
         | 
| 553 | 
            +
                    # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
         | 
| 554 | 
            +
                    # and should be between [0, 1]
         | 
| 555 | 
            +
             | 
| 556 | 
            +
                    accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
         | 
| 557 | 
            +
                    extra_step_kwargs = {}
         | 
| 558 | 
            +
                    if accepts_eta:
         | 
| 559 | 
            +
                        extra_step_kwargs["eta"] = eta
         | 
| 560 | 
            +
             | 
| 561 | 
            +
                    # check if the scheduler accepts generator
         | 
| 562 | 
            +
                    accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
         | 
| 563 | 
            +
                    if accepts_generator:
         | 
| 564 | 
            +
                        extra_step_kwargs["generator"] = generator
         | 
| 565 | 
            +
                    return extra_step_kwargs
         | 
| 566 | 
            +
             | 
| 567 | 
            +
                def check_inputs(
         | 
| 568 | 
            +
                    self,
         | 
| 569 | 
            +
                    prompt,
         | 
| 570 | 
            +
                    prompt_2,
         | 
| 571 | 
            +
                    image,
         | 
| 572 | 
            +
                    callback_steps,
         | 
| 573 | 
            +
                    negative_prompt=None,
         | 
| 574 | 
            +
                    negative_prompt_2=None,
         | 
| 575 | 
            +
                    prompt_embeds=None,
         | 
| 576 | 
            +
                    negative_prompt_embeds=None,
         | 
| 577 | 
            +
                    pooled_prompt_embeds=None,
         | 
| 578 | 
            +
                    negative_pooled_prompt_embeds=None,
         | 
| 579 | 
            +
                    controlnet_conditioning_scale=1.0,
         | 
| 580 | 
            +
                    control_guidance_start=0.0,
         | 
| 581 | 
            +
                    control_guidance_end=1.0,
         | 
| 582 | 
            +
                    callback_on_step_end_tensor_inputs=None,
         | 
| 583 | 
            +
                ):
         | 
| 584 | 
            +
                    if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
         | 
| 585 | 
            +
                        raise ValueError(
         | 
| 586 | 
            +
                            f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
         | 
| 587 | 
            +
                            f" {type(callback_steps)}."
         | 
| 588 | 
            +
                        )
         | 
| 589 | 
            +
             | 
| 590 | 
            +
                    if callback_on_step_end_tensor_inputs is not None and not all(
         | 
| 591 | 
            +
                        k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
         | 
| 592 | 
            +
                    ):
         | 
| 593 | 
            +
                        raise ValueError(
         | 
| 594 | 
            +
                            f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
         | 
| 595 | 
            +
                        )
         | 
| 596 | 
            +
             | 
| 597 | 
            +
                    if prompt is not None and prompt_embeds is not None:
         | 
| 598 | 
            +
                        raise ValueError(
         | 
| 599 | 
            +
                            f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
         | 
| 600 | 
            +
                            " only forward one of the two."
         | 
| 601 | 
            +
                        )
         | 
| 602 | 
            +
                    elif prompt_2 is not None and prompt_embeds is not None:
         | 
| 603 | 
            +
                        raise ValueError(
         | 
| 604 | 
            +
                            f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
         | 
| 605 | 
            +
                            " only forward one of the two."
         | 
| 606 | 
            +
                        )
         | 
| 607 | 
            +
                    elif prompt is None and prompt_embeds is None:
         | 
| 608 | 
            +
                        raise ValueError(
         | 
| 609 | 
            +
                            "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
         | 
| 610 | 
            +
                        )
         | 
| 611 | 
            +
                    elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
         | 
| 612 | 
            +
                        raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
         | 
| 613 | 
            +
                    elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
         | 
| 614 | 
            +
                        raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
         | 
| 615 | 
            +
             | 
| 616 | 
            +
                    if negative_prompt is not None and negative_prompt_embeds is not None:
         | 
| 617 | 
            +
                        raise ValueError(
         | 
| 618 | 
            +
                            f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
         | 
| 619 | 
            +
                            f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
         | 
| 620 | 
            +
                        )
         | 
| 621 | 
            +
                    elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
         | 
| 622 | 
            +
                        raise ValueError(
         | 
| 623 | 
            +
                            f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
         | 
| 624 | 
            +
                            f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
         | 
| 625 | 
            +
                        )
         | 
| 626 | 
            +
             | 
| 627 | 
            +
                    if prompt_embeds is not None and negative_prompt_embeds is not None:
         | 
| 628 | 
            +
                        if prompt_embeds.shape != negative_prompt_embeds.shape:
         | 
| 629 | 
            +
                            raise ValueError(
         | 
| 630 | 
            +
                                "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
         | 
| 631 | 
            +
                                f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
         | 
| 632 | 
            +
                                f" {negative_prompt_embeds.shape}."
         | 
| 633 | 
            +
                            )
         | 
| 634 | 
            +
             | 
| 635 | 
            +
                    if prompt_embeds is not None and pooled_prompt_embeds is None:
         | 
| 636 | 
            +
                        raise ValueError(
         | 
| 637 | 
            +
                            "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
         | 
| 638 | 
            +
                        )
         | 
| 639 | 
            +
             | 
| 640 | 
            +
                    if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
         | 
| 641 | 
            +
                        raise ValueError(
         | 
| 642 | 
            +
                            "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
         | 
| 643 | 
            +
                        )
         | 
| 644 | 
            +
             | 
| 645 | 
            +
                    # `prompt` needs more sophisticated handling when there are multiple
         | 
| 646 | 
            +
                    # conditionings.
         | 
| 647 | 
            +
                    if isinstance(self.controlnet, MultiControlNetModel):
         | 
| 648 | 
            +
                        if isinstance(prompt, list):
         | 
| 649 | 
            +
                            logger.warning(
         | 
| 650 | 
            +
                                f"You have {len(self.controlnet.nets)} ControlNets and you have passed {len(prompt)}"
         | 
| 651 | 
            +
                                " prompts. The conditionings will be fixed across the prompts."
         | 
| 652 | 
            +
                            )
         | 
| 653 | 
            +
             | 
| 654 | 
            +
                    # Check `image`
         | 
| 655 | 
            +
                    is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
         | 
| 656 | 
            +
                        self.controlnet, torch._dynamo.eval_frame.OptimizedModule
         | 
| 657 | 
            +
                    )
         | 
| 658 | 
            +
                    if (
         | 
| 659 | 
            +
                        isinstance(self.controlnet, ControlNetModel)
         | 
| 660 | 
            +
                        or is_compiled
         | 
| 661 | 
            +
                        and isinstance(self.controlnet._orig_mod, ControlNetModel)
         | 
| 662 | 
            +
                    ):
         | 
| 663 | 
            +
                        self.check_image(image, prompt, prompt_embeds)
         | 
| 664 | 
            +
                    elif (
         | 
| 665 | 
            +
                        isinstance(self.controlnet, MultiControlNetModel)
         | 
| 666 | 
            +
                        or is_compiled
         | 
| 667 | 
            +
                        and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
         | 
| 668 | 
            +
                    ):
         | 
| 669 | 
            +
                        if not isinstance(image, list):
         | 
| 670 | 
            +
                            raise TypeError("For multiple controlnets: `image` must be type `list`")
         | 
| 671 | 
            +
             | 
| 672 | 
            +
                        # When `image` is a nested list:
         | 
| 673 | 
            +
                        # (e.g. [[canny_image_1, pose_image_1], [canny_image_2, pose_image_2]])
         | 
| 674 | 
            +
                        elif any(isinstance(i, list) for i in image):
         | 
| 675 | 
            +
                            raise ValueError("A single batch of multiple conditionings are supported at the moment.")
         | 
| 676 | 
            +
                        elif len(image) != len(self.controlnet.nets):
         | 
| 677 | 
            +
                            raise ValueError(
         | 
| 678 | 
            +
                                f"For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(image)} images and {len(self.controlnet.nets)} ControlNets."
         | 
| 679 | 
            +
                            )
         | 
| 680 | 
            +
             | 
| 681 | 
            +
                        for image_ in image:
         | 
| 682 | 
            +
                            self.check_image(image_, prompt, prompt_embeds)
         | 
| 683 | 
            +
                    else:
         | 
| 684 | 
            +
                        assert False
         | 
| 685 | 
            +
             | 
| 686 | 
            +
                    # Check `controlnet_conditioning_scale`
         | 
| 687 | 
            +
                    if (
         | 
| 688 | 
            +
                        isinstance(self.controlnet, ControlNetModel)
         | 
| 689 | 
            +
                        or is_compiled
         | 
| 690 | 
            +
                        and isinstance(self.controlnet._orig_mod, ControlNetModel)
         | 
| 691 | 
            +
                    ):
         | 
| 692 | 
            +
                        if not isinstance(controlnet_conditioning_scale, float):
         | 
| 693 | 
            +
                            raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
         | 
| 694 | 
            +
                    elif (
         | 
| 695 | 
            +
                        isinstance(self.controlnet, MultiControlNetModel)
         | 
| 696 | 
            +
                        or is_compiled
         | 
| 697 | 
            +
                        and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
         | 
| 698 | 
            +
                    ):
         | 
| 699 | 
            +
                        if isinstance(controlnet_conditioning_scale, list):
         | 
| 700 | 
            +
                            if any(isinstance(i, list) for i in controlnet_conditioning_scale):
         | 
| 701 | 
            +
                                raise ValueError("A single batch of multiple conditionings are supported at the moment.")
         | 
| 702 | 
            +
                        elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(
         | 
| 703 | 
            +
                            self.controlnet.nets
         | 
| 704 | 
            +
                        ):
         | 
| 705 | 
            +
                            raise ValueError(
         | 
| 706 | 
            +
                                "For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have"
         | 
| 707 | 
            +
                                " the same length as the number of controlnets"
         | 
| 708 | 
            +
                            )
         | 
| 709 | 
            +
                    else:
         | 
| 710 | 
            +
                        assert False
         | 
| 711 | 
            +
             | 
| 712 | 
            +
                    if not isinstance(control_guidance_start, (tuple, list)):
         | 
| 713 | 
            +
                        control_guidance_start = [control_guidance_start]
         | 
| 714 | 
            +
             | 
| 715 | 
            +
                    if not isinstance(control_guidance_end, (tuple, list)):
         | 
| 716 | 
            +
                        control_guidance_end = [control_guidance_end]
         | 
| 717 | 
            +
             | 
| 718 | 
            +
                    if len(control_guidance_start) != len(control_guidance_end):
         | 
| 719 | 
            +
                        raise ValueError(
         | 
| 720 | 
            +
                            f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list."
         | 
| 721 | 
            +
                        )
         | 
| 722 | 
            +
             | 
| 723 | 
            +
                    if isinstance(self.controlnet, MultiControlNetModel):
         | 
| 724 | 
            +
                        if len(control_guidance_start) != len(self.controlnet.nets):
         | 
| 725 | 
            +
                            raise ValueError(
         | 
| 726 | 
            +
                                f"`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}."
         | 
| 727 | 
            +
                            )
         | 
| 728 | 
            +
             | 
| 729 | 
            +
                    for start, end in zip(control_guidance_start, control_guidance_end):
         | 
| 730 | 
            +
                        if start >= end:
         | 
| 731 | 
            +
                            raise ValueError(
         | 
| 732 | 
            +
                                f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}."
         | 
| 733 | 
            +
                            )
         | 
| 734 | 
            +
                        if start < 0.0:
         | 
| 735 | 
            +
                            raise ValueError(f"control guidance start: {start} can't be smaller than 0.")
         | 
| 736 | 
            +
                        if end > 1.0:
         | 
| 737 | 
            +
                            raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")
         | 
| 738 | 
            +
             | 
| 739 | 
            +
                # Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.check_image
         | 
| 740 | 
            +
                def check_image(self, image, prompt, prompt_embeds):
         | 
| 741 | 
            +
                    image_is_pil = isinstance(image, PIL.Image.Image)
         | 
| 742 | 
            +
                    image_is_tensor = isinstance(image, torch.Tensor)
         | 
| 743 | 
            +
                    image_is_np = isinstance(image, np.ndarray)
         | 
| 744 | 
            +
                    image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
         | 
| 745 | 
            +
                    image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
         | 
| 746 | 
            +
                    image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray)
         | 
| 747 | 
            +
             | 
| 748 | 
            +
                    if (
         | 
| 749 | 
            +
                        not image_is_pil
         | 
| 750 | 
            +
                        and not image_is_tensor
         | 
| 751 | 
            +
                        and not image_is_np
         | 
| 752 | 
            +
                        and not image_is_pil_list
         | 
| 753 | 
            +
                        and not image_is_tensor_list
         | 
| 754 | 
            +
                        and not image_is_np_list
         | 
| 755 | 
            +
                    ):
         | 
| 756 | 
            +
                        raise TypeError(
         | 
| 757 | 
            +
                            f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}"
         | 
| 758 | 
            +
                        )
         | 
| 759 | 
            +
             | 
| 760 | 
            +
                    if image_is_pil:
         | 
| 761 | 
            +
                        image_batch_size = 1
         | 
| 762 | 
            +
                    else:
         | 
| 763 | 
            +
                        image_batch_size = len(image)
         | 
| 764 | 
            +
             | 
| 765 | 
            +
                    if prompt is not None and isinstance(prompt, str):
         | 
| 766 | 
            +
                        prompt_batch_size = 1
         | 
| 767 | 
            +
                    elif prompt is not None and isinstance(prompt, list):
         | 
| 768 | 
            +
                        prompt_batch_size = len(prompt)
         | 
| 769 | 
            +
                    elif prompt_embeds is not None:
         | 
| 770 | 
            +
                        prompt_batch_size = prompt_embeds.shape[0]
         | 
| 771 | 
            +
             | 
| 772 | 
            +
                    if image_batch_size != 1 and image_batch_size != prompt_batch_size:
         | 
| 773 | 
            +
                        raise ValueError(
         | 
| 774 | 
            +
                            f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
         | 
| 775 | 
            +
                        )
         | 
| 776 | 
            +
             | 
| 777 | 
            +
                # Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.prepare_image
         | 
| 778 | 
            +
                def prepare_image(
         | 
| 779 | 
            +
                    self,
         | 
| 780 | 
            +
                    image,
         | 
| 781 | 
            +
                    width,
         | 
| 782 | 
            +
                    height,
         | 
| 783 | 
            +
                    batch_size,
         | 
| 784 | 
            +
                    num_images_per_prompt,
         | 
| 785 | 
            +
                    device,
         | 
| 786 | 
            +
                    dtype,
         | 
| 787 | 
            +
                    do_classifier_free_guidance=False,
         | 
| 788 | 
            +
                    guess_mode=False,
         | 
| 789 | 
            +
                ):
         | 
| 790 | 
            +
                    image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
         | 
| 791 | 
            +
                    image_batch_size = image.shape[0]
         | 
| 792 | 
            +
             | 
| 793 | 
            +
                    if image_batch_size == 1:
         | 
| 794 | 
            +
                        repeat_by = batch_size
         | 
| 795 | 
            +
                    else:
         | 
| 796 | 
            +
                        # image batch size is the same as prompt batch size
         | 
| 797 | 
            +
                        repeat_by = num_images_per_prompt
         | 
| 798 | 
            +
             | 
| 799 | 
            +
                    image = image.repeat_interleave(repeat_by, dim=0)
         | 
| 800 | 
            +
             | 
| 801 | 
            +
                    image = image.to(device=device, dtype=dtype)
         | 
| 802 | 
            +
             | 
| 803 | 
            +
                    if do_classifier_free_guidance and not guess_mode:
         | 
| 804 | 
            +
                        image = torch.cat([image] * 2)
         | 
| 805 | 
            +
             | 
| 806 | 
            +
                    return image
         | 
| 807 | 
            +
             | 
| 808 | 
            +
                # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
         | 
| 809 | 
            +
                def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
         | 
| 810 | 
            +
                    shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
         | 
| 811 | 
            +
                    if isinstance(generator, list) and len(generator) != batch_size:
         | 
| 812 | 
            +
                        raise ValueError(
         | 
| 813 | 
            +
                            f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
         | 
| 814 | 
            +
                            f" size of {batch_size}. Make sure the batch size matches the length of the generators."
         | 
| 815 | 
            +
                        )
         | 
| 816 | 
            +
             | 
| 817 | 
            +
                    if latents is None:
         | 
| 818 | 
            +
                        latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
         | 
| 819 | 
            +
                    else:
         | 
| 820 | 
            +
                        latents = latents.to(device)
         | 
| 821 | 
            +
             | 
| 822 | 
            +
                    # scale the initial noise by the standard deviation required by the scheduler
         | 
| 823 | 
            +
                    latents = latents * self.scheduler.init_noise_sigma
         | 
| 824 | 
            +
                    return latents
         | 
| 825 | 
            +
             | 
| 826 | 
            +
                # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline._get_add_time_ids
         | 
| 827 | 
            +
                def _get_add_time_ids(
         | 
| 828 | 
            +
                    self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None
         | 
| 829 | 
            +
                ):
         | 
| 830 | 
            +
                    add_time_ids = list(original_size + crops_coords_top_left + target_size)
         | 
| 831 | 
            +
             | 
| 832 | 
            +
                    passed_add_embed_dim = (
         | 
| 833 | 
            +
                        self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim
         | 
| 834 | 
            +
                    )
         | 
| 835 | 
            +
                    expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
         | 
| 836 | 
            +
             | 
| 837 | 
            +
                    if expected_add_embed_dim != passed_add_embed_dim:
         | 
| 838 | 
            +
                        raise ValueError(
         | 
| 839 | 
            +
                            f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
         | 
| 840 | 
            +
                        )
         | 
| 841 | 
            +
             | 
| 842 | 
            +
                    add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
         | 
| 843 | 
            +
                    return add_time_ids
         | 
| 844 | 
            +
             | 
| 845 | 
            +
                # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
         | 
| 846 | 
            +
                def upcast_vae(self):
         | 
| 847 | 
            +
                    dtype = self.vae.dtype
         | 
| 848 | 
            +
                    self.vae.to(dtype=torch.float32)
         | 
| 849 | 
            +
                    use_torch_2_0_or_xformers = isinstance(
         | 
| 850 | 
            +
                        self.vae.decoder.mid_block.attentions[0].processor,
         | 
| 851 | 
            +
                        (
         | 
| 852 | 
            +
                            AttnProcessor2_0,
         | 
| 853 | 
            +
                            XFormersAttnProcessor,
         | 
| 854 | 
            +
                            LoRAXFormersAttnProcessor,
         | 
| 855 | 
            +
                            LoRAAttnProcessor2_0,
         | 
| 856 | 
            +
                        ),
         | 
| 857 | 
            +
                    )
         | 
| 858 | 
            +
                    # if xformers or torch_2_0 is used attention block does not need
         | 
| 859 | 
            +
                    # to be in float32 which can save lots of memory
         | 
| 860 | 
            +
                    if use_torch_2_0_or_xformers:
         | 
| 861 | 
            +
                        self.vae.post_quant_conv.to(dtype)
         | 
| 862 | 
            +
                        self.vae.decoder.conv_in.to(dtype)
         | 
| 863 | 
            +
                        self.vae.decoder.mid_block.to(dtype)
         | 
| 864 | 
            +
             | 
| 865 | 
            +
                # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_freeu
         | 
| 866 | 
            +
                def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
         | 
| 867 | 
            +
                    r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497.
         | 
| 868 | 
            +
             | 
| 869 | 
            +
                    The suffixes after the scaling factors represent the stages where they are being applied.
         | 
| 870 | 
            +
             | 
| 871 | 
            +
                    Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values
         | 
| 872 | 
            +
                    that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
         | 
| 873 | 
            +
             | 
| 874 | 
            +
                    Args:
         | 
| 875 | 
            +
                        s1 (`float`):
         | 
| 876 | 
            +
                            Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
         | 
| 877 | 
            +
                            mitigate "oversmoothing effect" in the enhanced denoising process.
         | 
| 878 | 
            +
                        s2 (`float`):
         | 
| 879 | 
            +
                            Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
         | 
| 880 | 
            +
                            mitigate "oversmoothing effect" in the enhanced denoising process.
         | 
| 881 | 
            +
                        b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
         | 
| 882 | 
            +
                        b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
         | 
| 883 | 
            +
                    """
         | 
| 884 | 
            +
                    if not hasattr(self, "unet"):
         | 
| 885 | 
            +
                        raise ValueError("The pipeline must have `unet` for using FreeU.")
         | 
| 886 | 
            +
                    self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2)
         | 
| 887 | 
            +
             | 
| 888 | 
            +
                # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_freeu
         | 
| 889 | 
            +
                def disable_freeu(self):
         | 
| 890 | 
            +
                    """Disables the FreeU mechanism if enabled."""
         | 
| 891 | 
            +
                    self.unet.disable_freeu()
         | 
| 892 | 
            +
             | 
| 893 | 
            +
                # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
         | 
| 894 | 
            +
                def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
         | 
| 895 | 
            +
                    """
         | 
| 896 | 
            +
                    See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
         | 
| 897 | 
            +
             | 
| 898 | 
            +
                    Args:
         | 
| 899 | 
            +
                        timesteps (`torch.Tensor`):
         | 
| 900 | 
            +
                            generate embedding vectors at these timesteps
         | 
| 901 | 
            +
                        embedding_dim (`int`, *optional*, defaults to 512):
         | 
| 902 | 
            +
                            dimension of the embeddings to generate
         | 
| 903 | 
            +
                        dtype:
         | 
| 904 | 
            +
                            data type of the generated embeddings
         | 
| 905 | 
            +
             | 
| 906 | 
            +
                    Returns:
         | 
| 907 | 
            +
                        `torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
         | 
| 908 | 
            +
                    """
         | 
| 909 | 
            +
                    assert len(w.shape) == 1
         | 
| 910 | 
            +
                    w = w * 1000.0
         | 
| 911 | 
            +
             | 
| 912 | 
            +
                    half_dim = embedding_dim // 2
         | 
| 913 | 
            +
                    emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
         | 
| 914 | 
            +
                    emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
         | 
| 915 | 
            +
                    emb = w.to(dtype)[:, None] * emb[None, :]
         | 
| 916 | 
            +
                    emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
         | 
| 917 | 
            +
                    if embedding_dim % 2 == 1:  # zero pad
         | 
| 918 | 
            +
                        emb = torch.nn.functional.pad(emb, (0, 1))
         | 
| 919 | 
            +
                    assert emb.shape == (w.shape[0], embedding_dim)
         | 
| 920 | 
            +
                    return emb
         | 
| 921 | 
            +
             | 
| 922 | 
            +
                @property
         | 
| 923 | 
            +
                def guidance_scale(self):
         | 
| 924 | 
            +
                    return self._guidance_scale
         | 
| 925 | 
            +
             | 
| 926 | 
            +
                @property
         | 
| 927 | 
            +
                def clip_skip(self):
         | 
| 928 | 
            +
                    return self._clip_skip
         | 
| 929 | 
            +
             | 
| 930 | 
            +
                # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
         | 
| 931 | 
            +
                # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
         | 
| 932 | 
            +
                # corresponds to doing no classifier free guidance.
         | 
| 933 | 
            +
                @property
         | 
| 934 | 
            +
                def do_classifier_free_guidance(self):
         | 
| 935 | 
            +
                    return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
         | 
| 936 | 
            +
             | 
| 937 | 
            +
                @property
         | 
| 938 | 
            +
                def cross_attention_kwargs(self):
         | 
| 939 | 
            +
                    return self._cross_attention_kwargs
         | 
| 940 | 
            +
             | 
| 941 | 
            +
                @property
         | 
| 942 | 
            +
                def num_timesteps(self):
         | 
| 943 | 
            +
                    return self._num_timesteps
         | 
| 944 | 
            +
             | 
| 945 | 
            +
                @torch.no_grad()
         | 
| 946 | 
            +
                @replace_example_docstring(EXAMPLE_DOC_STRING)
         | 
| 947 | 
            +
                def __call__(
         | 
| 948 | 
            +
                    self,
         | 
| 949 | 
            +
                    prompt: Union[str, List[str]] = None,
         | 
| 950 | 
            +
                    prompt_2: Optional[Union[str, List[str]]] = None,
         | 
| 951 | 
            +
                    image: PipelineImageInput = None,
         | 
| 952 | 
            +
                    height: Optional[int] = None,
         | 
| 953 | 
            +
                    width: Optional[int] = None,
         | 
| 954 | 
            +
                    num_inference_steps: int = 50,
         | 
| 955 | 
            +
                    guidance_scale: float = 5.0,
         | 
| 956 | 
            +
                    negative_prompt: Optional[Union[str, List[str]]] = None,
         | 
| 957 | 
            +
                    negative_prompt_2: Optional[Union[str, List[str]]] = None,
         | 
| 958 | 
            +
                    num_images_per_prompt: Optional[int] = 1,
         | 
| 959 | 
            +
                    eta: float = 0.0,
         | 
| 960 | 
            +
                    generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
         | 
| 961 | 
            +
                    latents: Optional[torch.FloatTensor] = None,
         | 
| 962 | 
            +
                    prompt_embeds: Optional[torch.FloatTensor] = None,
         | 
| 963 | 
            +
                    negative_prompt_embeds: Optional[torch.FloatTensor] = None,
         | 
| 964 | 
            +
                    pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
         | 
| 965 | 
            +
                    negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
         | 
| 966 | 
            +
                    ip_adapter_image: Optional[PipelineImageInput] = None,
         | 
| 967 | 
            +
                    output_type: Optional[str] = "pil",
         | 
| 968 | 
            +
                    return_dict: bool = True,
         | 
| 969 | 
            +
                    cross_attention_kwargs: Optional[Dict[str, Any]] = None,
         | 
| 970 | 
            +
                    controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
         | 
| 971 | 
            +
                    guess_mode: bool = False,
         | 
| 972 | 
            +
                    control_guidance_start: Union[float, List[float]] = 0.0,
         | 
| 973 | 
            +
                    control_guidance_end: Union[float, List[float]] = 1.0,
         | 
| 974 | 
            +
                    original_size: Tuple[int, int] = None,
         | 
| 975 | 
            +
                    crops_coords_top_left: Tuple[int, int] = (0, 0),
         | 
| 976 | 
            +
                    target_size: Tuple[int, int] = None,
         | 
| 977 | 
            +
                    negative_original_size: Optional[Tuple[int, int]] = None,
         | 
| 978 | 
            +
                    negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
         | 
| 979 | 
            +
                    negative_target_size: Optional[Tuple[int, int]] = None,
         | 
| 980 | 
            +
                    clip_skip: Optional[int] = None,
         | 
| 981 | 
            +
                    callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
         | 
| 982 | 
            +
                    callback_on_step_end_tensor_inputs: List[str] = ["latents"],
         | 
| 983 | 
            +
                    **kwargs,
         | 
| 984 | 
            +
                ):
         | 
| 985 | 
            +
                    r"""
         | 
| 986 | 
            +
                    The call function to the pipeline for generation.
         | 
| 987 | 
            +
             | 
| 988 | 
            +
                    Args:
         | 
| 989 | 
            +
                        prompt (`str` or `List[str]`, *optional*):
         | 
| 990 | 
            +
                            The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
         | 
| 991 | 
            +
                        prompt_2 (`str` or `List[str]`, *optional*):
         | 
| 992 | 
            +
                            The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
         | 
| 993 | 
            +
                            used in both text-encoders.
         | 
| 994 | 
            +
                        image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
         | 
| 995 | 
            +
                                `List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
         | 
| 996 | 
            +
                            The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
         | 
| 997 | 
            +
                            specified as `torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be
         | 
| 998 | 
            +
                            accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height
         | 
| 999 | 
            +
                            and/or width are passed, `image` is resized accordingly. If multiple ControlNets are specified in
         | 
| 1000 | 
            +
                            `init`, images must be passed as a list such that each element of the list can be correctly batched for
         | 
| 1001 | 
            +
                            input to a single ControlNet.
         | 
| 1002 | 
            +
                        height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
         | 
| 1003 | 
            +
                            The height in pixels of the generated image. Anything below 512 pixels won't work well for
         | 
| 1004 | 
            +
                            [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
         | 
| 1005 | 
            +
                            and checkpoints that are not specifically fine-tuned on low resolutions.
         | 
| 1006 | 
            +
                        width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
         | 
| 1007 | 
            +
                            The width in pixels of the generated image. Anything below 512 pixels won't work well for
         | 
| 1008 | 
            +
                            [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
         | 
| 1009 | 
            +
                            and checkpoints that are not specifically fine-tuned on low resolutions.
         | 
| 1010 | 
            +
                        num_inference_steps (`int`, *optional*, defaults to 50):
         | 
| 1011 | 
            +
                            The number of denoising steps. More denoising steps usually lead to a higher quality image at the
         | 
| 1012 | 
            +
                            expense of slower inference.
         | 
| 1013 | 
            +
                        guidance_scale (`float`, *optional*, defaults to 5.0):
         | 
| 1014 | 
            +
                            A higher guidance scale value encourages the model to generate images closely linked to the text
         | 
| 1015 | 
            +
                            `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
         | 
| 1016 | 
            +
                        negative_prompt (`str` or `List[str]`, *optional*):
         | 
| 1017 | 
            +
                            The prompt or prompts to guide what to not include in image generation. If not defined, you need to
         | 
| 1018 | 
            +
                            pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
         | 
| 1019 | 
            +
                        negative_prompt_2 (`str` or `List[str]`, *optional*):
         | 
| 1020 | 
            +
                            The prompt or prompts to guide what to not include in image generation. This is sent to `tokenizer_2`
         | 
| 1021 | 
            +
                            and `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders.
         | 
| 1022 | 
            +
                        num_images_per_prompt (`int`, *optional*, defaults to 1):
         | 
| 1023 | 
            +
                            The number of images to generate per prompt.
         | 
| 1024 | 
            +
                        eta (`float`, *optional*, defaults to 0.0):
         | 
| 1025 | 
            +
                            Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
         | 
| 1026 | 
            +
                            to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
         | 
| 1027 | 
            +
                        generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
         | 
| 1028 | 
            +
                            A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
         | 
| 1029 | 
            +
                            generation deterministic.
         | 
| 1030 | 
            +
                        latents (`torch.FloatTensor`, *optional*):
         | 
| 1031 | 
            +
                            Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
         | 
| 1032 | 
            +
                            generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
         | 
| 1033 | 
            +
                            tensor is generated by sampling using the supplied random `generator`.
         | 
| 1034 | 
            +
                        prompt_embeds (`torch.FloatTensor`, *optional*):
         | 
| 1035 | 
            +
                            Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
         | 
| 1036 | 
            +
                            provided, text embeddings are generated from the `prompt` input argument.
         | 
| 1037 | 
            +
                        negative_prompt_embeds (`torch.FloatTensor`, *optional*):
         | 
| 1038 | 
            +
                            Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
         | 
| 1039 | 
            +
                            not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
         | 
| 1040 | 
            +
                        pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
         | 
| 1041 | 
            +
                            Pre-generated pooled text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
         | 
| 1042 | 
            +
                            not provided, pooled text embeddings are generated from `prompt` input argument.
         | 
| 1043 | 
            +
                        negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
         | 
| 1044 | 
            +
                            Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs (prompt
         | 
| 1045 | 
            +
                            weighting). If not provided, pooled `negative_prompt_embeds` are generated from `negative_prompt` input
         | 
| 1046 | 
            +
                            argument.
         | 
| 1047 | 
            +
                        ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
         | 
| 1048 | 
            +
                        output_type (`str`, *optional*, defaults to `"pil"`):
         | 
| 1049 | 
            +
                            The output format of the generated image. Choose between `PIL.Image` or `np.array`.
         | 
| 1050 | 
            +
                        return_dict (`bool`, *optional*, defaults to `True`):
         | 
| 1051 | 
            +
                            Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
         | 
| 1052 | 
            +
                            plain tuple.
         | 
| 1053 | 
            +
                        cross_attention_kwargs (`dict`, *optional*):
         | 
| 1054 | 
            +
                            A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
         | 
| 1055 | 
            +
                            [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
         | 
| 1056 | 
            +
                        controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
         | 
| 1057 | 
            +
                            The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
         | 
| 1058 | 
            +
                            to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
         | 
| 1059 | 
            +
                            the corresponding scale as a list.
         | 
| 1060 | 
            +
                        guess_mode (`bool`, *optional*, defaults to `False`):
         | 
| 1061 | 
            +
                            The ControlNet encoder tries to recognize the content of the input image even if you remove all
         | 
| 1062 | 
            +
                            prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended.
         | 
| 1063 | 
            +
                        control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
         | 
| 1064 | 
            +
                            The percentage of total steps at which the ControlNet starts applying.
         | 
| 1065 | 
            +
                        control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
         | 
| 1066 | 
            +
                            The percentage of total steps at which the ControlNet stops applying.
         | 
| 1067 | 
            +
                        original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
         | 
| 1068 | 
            +
                            If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
         | 
| 1069 | 
            +
                            `original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
         | 
| 1070 | 
            +
                            explained in section 2.2 of
         | 
| 1071 | 
            +
                            [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
         | 
| 1072 | 
            +
                        crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
         | 
| 1073 | 
            +
                            `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
         | 
| 1074 | 
            +
                            `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
         | 
| 1075 | 
            +
                            `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
         | 
| 1076 | 
            +
                            [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
         | 
| 1077 | 
            +
                        target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
         | 
| 1078 | 
            +
                            For most cases, `target_size` should be set to the desired height and width of the generated image. If
         | 
| 1079 | 
            +
                            not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
         | 
| 1080 | 
            +
                            section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
         | 
| 1081 | 
            +
                        negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
         | 
| 1082 | 
            +
                            To negatively condition the generation process based on a specific image resolution. Part of SDXL's
         | 
| 1083 | 
            +
                            micro-conditioning as explained in section 2.2 of
         | 
| 1084 | 
            +
                            [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
         | 
| 1085 | 
            +
                            information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
         | 
| 1086 | 
            +
                        negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
         | 
| 1087 | 
            +
                            To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
         | 
| 1088 | 
            +
                            micro-conditioning as explained in section 2.2 of
         | 
| 1089 | 
            +
                            [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
         | 
| 1090 | 
            +
                            information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
         | 
| 1091 | 
            +
                        negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
         | 
| 1092 | 
            +
                            To negatively condition the generation process based on a target image resolution. It should be as same
         | 
| 1093 | 
            +
                            as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
         | 
| 1094 | 
            +
                            [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
         | 
| 1095 | 
            +
                            information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
         | 
| 1096 | 
            +
                        clip_skip (`int`, *optional*):
         | 
| 1097 | 
            +
                            Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
         | 
| 1098 | 
            +
                            the output of the pre-final layer will be used for computing the prompt embeddings.
         | 
| 1099 | 
            +
                        callback_on_step_end (`Callable`, *optional*):
         | 
| 1100 | 
            +
                            A function that calls at the end of each denoising steps during the inference. The function is called
         | 
| 1101 | 
            +
                            with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
         | 
| 1102 | 
            +
                            callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
         | 
| 1103 | 
            +
                            `callback_on_step_end_tensor_inputs`.
         | 
| 1104 | 
            +
                        callback_on_step_end_tensor_inputs (`List`, *optional*):
         | 
| 1105 | 
            +
                            The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
         | 
| 1106 | 
            +
                            will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
         | 
| 1107 | 
            +
                            `._callback_tensor_inputs` attribute of your pipeine class.
         | 
| 1108 | 
            +
             | 
| 1109 | 
            +
                    Examples:
         | 
| 1110 | 
            +
             | 
| 1111 | 
            +
                    Returns:
         | 
| 1112 | 
            +
                        [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
         | 
| 1113 | 
            +
                            If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
         | 
| 1114 | 
            +
                            otherwise a `tuple` is returned containing the output images.
         | 
| 1115 | 
            +
                    """
         | 
| 1116 | 
            +
             | 
| 1117 | 
            +
                    callback = kwargs.pop("callback", None)
         | 
| 1118 | 
            +
                    callback_steps = kwargs.pop("callback_steps", None)
         | 
| 1119 | 
            +
             | 
| 1120 | 
            +
                    if callback is not None:
         | 
| 1121 | 
            +
                        deprecate(
         | 
| 1122 | 
            +
                            "callback",
         | 
| 1123 | 
            +
                            "1.0.0",
         | 
| 1124 | 
            +
                            "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
         | 
| 1125 | 
            +
                        )
         | 
| 1126 | 
            +
                    if callback_steps is not None:
         | 
| 1127 | 
            +
                        deprecate(
         | 
| 1128 | 
            +
                            "callback_steps",
         | 
| 1129 | 
            +
                            "1.0.0",
         | 
| 1130 | 
            +
                            "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
         | 
| 1131 | 
            +
                        )
         | 
| 1132 | 
            +
             | 
| 1133 | 
            +
                    controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
         | 
| 1134 | 
            +
             | 
| 1135 | 
            +
                    # align format for control guidance
         | 
| 1136 | 
            +
                    if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
         | 
| 1137 | 
            +
                        control_guidance_start = len(control_guidance_end) * [control_guidance_start]
         | 
| 1138 | 
            +
                    elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
         | 
| 1139 | 
            +
                        control_guidance_end = len(control_guidance_start) * [control_guidance_end]
         | 
| 1140 | 
            +
                    elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
         | 
| 1141 | 
            +
                        mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
         | 
| 1142 | 
            +
                        control_guidance_start, control_guidance_end = (
         | 
| 1143 | 
            +
                            mult * [control_guidance_start],
         | 
| 1144 | 
            +
                            mult * [control_guidance_end],
         | 
| 1145 | 
            +
                        )
         | 
| 1146 | 
            +
             | 
| 1147 | 
            +
                    # 1. Check inputs. Raise error if not correct
         | 
| 1148 | 
            +
                    self.check_inputs(
         | 
| 1149 | 
            +
                        prompt,
         | 
| 1150 | 
            +
                        prompt_2,
         | 
| 1151 | 
            +
                        image,
         | 
| 1152 | 
            +
                        callback_steps,
         | 
| 1153 | 
            +
                        negative_prompt,
         | 
| 1154 | 
            +
                        negative_prompt_2,
         | 
| 1155 | 
            +
                        prompt_embeds,
         | 
| 1156 | 
            +
                        negative_prompt_embeds,
         | 
| 1157 | 
            +
                        pooled_prompt_embeds,
         | 
| 1158 | 
            +
                        negative_pooled_prompt_embeds,
         | 
| 1159 | 
            +
                        controlnet_conditioning_scale,
         | 
| 1160 | 
            +
                        control_guidance_start,
         | 
| 1161 | 
            +
                        control_guidance_end,
         | 
| 1162 | 
            +
                        callback_on_step_end_tensor_inputs,
         | 
| 1163 | 
            +
                    )
         | 
| 1164 | 
            +
             | 
| 1165 | 
            +
                    self._guidance_scale = guidance_scale
         | 
| 1166 | 
            +
                    self._clip_skip = clip_skip
         | 
| 1167 | 
            +
                    self._cross_attention_kwargs = cross_attention_kwargs
         | 
| 1168 | 
            +
             | 
| 1169 | 
            +
                    # 2. Define call parameters
         | 
| 1170 | 
            +
                    if prompt is not None and isinstance(prompt, str):
         | 
| 1171 | 
            +
                        batch_size = 1
         | 
| 1172 | 
            +
                    elif prompt is not None and isinstance(prompt, list):
         | 
| 1173 | 
            +
                        batch_size = len(prompt)
         | 
| 1174 | 
            +
                    else:
         | 
| 1175 | 
            +
                        batch_size = prompt_embeds.shape[0]
         | 
| 1176 | 
            +
             | 
| 1177 | 
            +
                    device = self._execution_device
         | 
| 1178 | 
            +
             | 
| 1179 | 
            +
                    if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
         | 
| 1180 | 
            +
                        controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
         | 
| 1181 | 
            +
             | 
| 1182 | 
            +
                    global_pool_conditions = (
         | 
| 1183 | 
            +
                        controlnet.config.global_pool_conditions
         | 
| 1184 | 
            +
                        if isinstance(controlnet, ControlNetModel)
         | 
| 1185 | 
            +
                        else controlnet.nets[0].config.global_pool_conditions
         | 
| 1186 | 
            +
                    )
         | 
| 1187 | 
            +
                    guess_mode = guess_mode or global_pool_conditions
         | 
| 1188 | 
            +
             | 
| 1189 | 
            +
                    # 3.1 Encode input prompt
         | 
| 1190 | 
            +
                    text_encoder_lora_scale = (
         | 
| 1191 | 
            +
                        self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
         | 
| 1192 | 
            +
                    )
         | 
| 1193 | 
            +
                    (
         | 
| 1194 | 
            +
                        prompt_embeds,
         | 
| 1195 | 
            +
                        negative_prompt_embeds,
         | 
| 1196 | 
            +
                        pooled_prompt_embeds,
         | 
| 1197 | 
            +
                        negative_pooled_prompt_embeds,
         | 
| 1198 | 
            +
                    ) = self.encode_prompt(
         | 
| 1199 | 
            +
                        prompt,
         | 
| 1200 | 
            +
                        prompt_2,
         | 
| 1201 | 
            +
                        device,
         | 
| 1202 | 
            +
                        num_images_per_prompt,
         | 
| 1203 | 
            +
                        self.do_classifier_free_guidance,
         | 
| 1204 | 
            +
                        negative_prompt,
         | 
| 1205 | 
            +
                        negative_prompt_2,
         | 
| 1206 | 
            +
                        prompt_embeds=prompt_embeds,
         | 
| 1207 | 
            +
                        negative_prompt_embeds=negative_prompt_embeds,
         | 
| 1208 | 
            +
                        pooled_prompt_embeds=pooled_prompt_embeds,
         | 
| 1209 | 
            +
                        negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
         | 
| 1210 | 
            +
                        lora_scale=text_encoder_lora_scale,
         | 
| 1211 | 
            +
                        clip_skip=self.clip_skip,
         | 
| 1212 | 
            +
                    )
         | 
| 1213 | 
            +
             | 
| 1214 | 
            +
                    # 3.2 Encode ip_adapter_image
         | 
| 1215 | 
            +
                    if ip_adapter_image is not None:
         | 
| 1216 | 
            +
                        image_embeds = self.prepare_ip_adapter_image_embeds(
         | 
| 1217 | 
            +
                            ip_adapter_image, device, batch_size * num_images_per_prompt
         | 
| 1218 | 
            +
                        )
         | 
| 1219 | 
            +
             | 
| 1220 | 
            +
                    # 4. Prepare image
         | 
| 1221 | 
            +
                    if isinstance(controlnet, ControlNetModel):
         | 
| 1222 | 
            +
                        image = self.prepare_image(
         | 
| 1223 | 
            +
                            image=image,
         | 
| 1224 | 
            +
                            width=width,
         | 
| 1225 | 
            +
                            height=height,
         | 
| 1226 | 
            +
                            batch_size=batch_size * num_images_per_prompt,
         | 
| 1227 | 
            +
                            num_images_per_prompt=num_images_per_prompt,
         | 
| 1228 | 
            +
                            device=device,
         | 
| 1229 | 
            +
                            dtype=controlnet.dtype,
         | 
| 1230 | 
            +
                            do_classifier_free_guidance=self.do_classifier_free_guidance,
         | 
| 1231 | 
            +
                            guess_mode=guess_mode,
         | 
| 1232 | 
            +
                        )
         | 
| 1233 | 
            +
                        height, width = image.shape[-2:]
         | 
| 1234 | 
            +
                        height, width = height*self.vae_scale_factor, width*self.vae_scale_factor # for vae controlnet
         | 
| 1235 | 
            +
                    elif isinstance(controlnet, MultiControlNetModel):
         | 
| 1236 | 
            +
                        images = []
         | 
| 1237 | 
            +
             | 
| 1238 | 
            +
                        for image_ in image:
         | 
| 1239 | 
            +
                            image_ = self.prepare_image(
         | 
| 1240 | 
            +
                                image=image_,
         | 
| 1241 | 
            +
                                width=width,
         | 
| 1242 | 
            +
                                height=height,
         | 
| 1243 | 
            +
                                batch_size=batch_size * num_images_per_prompt,
         | 
| 1244 | 
            +
                                num_images_per_prompt=num_images_per_prompt,
         | 
| 1245 | 
            +
                                device=device,
         | 
| 1246 | 
            +
                                dtype=controlnet.dtype,
         | 
| 1247 | 
            +
                                do_classifier_free_guidance=self.do_classifier_free_guidance,
         | 
| 1248 | 
            +
                                guess_mode=guess_mode,
         | 
| 1249 | 
            +
                            )
         | 
| 1250 | 
            +
             | 
| 1251 | 
            +
                            images.append(image_)
         | 
| 1252 | 
            +
             | 
| 1253 | 
            +
                        image = images
         | 
| 1254 | 
            +
                        height, width = image[0].shape[-2:]
         | 
| 1255 | 
            +
                    else:
         | 
| 1256 | 
            +
                        assert False
         | 
| 1257 | 
            +
             | 
| 1258 | 
            +
                    # 5. Prepare timesteps
         | 
| 1259 | 
            +
                    self.scheduler.set_timesteps(num_inference_steps, device=device)
         | 
| 1260 | 
            +
                    timesteps = self.scheduler.timesteps
         | 
| 1261 | 
            +
                    self._num_timesteps = len(timesteps)
         | 
| 1262 | 
            +
             | 
| 1263 | 
            +
                    # 6. Prepare latent variables
         | 
| 1264 | 
            +
                    num_channels_latents = self.unet.config.in_channels
         | 
| 1265 | 
            +
                    latents = self.prepare_latents(
         | 
| 1266 | 
            +
                        batch_size * num_images_per_prompt,
         | 
| 1267 | 
            +
                        num_channels_latents,
         | 
| 1268 | 
            +
                        height,
         | 
| 1269 | 
            +
                        width,
         | 
| 1270 | 
            +
                        prompt_embeds.dtype,
         | 
| 1271 | 
            +
                        device,
         | 
| 1272 | 
            +
                        generator,
         | 
| 1273 | 
            +
                        latents,
         | 
| 1274 | 
            +
                    )
         | 
| 1275 | 
            +
             | 
| 1276 | 
            +
                    # 6.5 Optionally get Guidance Scale Embedding
         | 
| 1277 | 
            +
                    timestep_cond = None
         | 
| 1278 | 
            +
                    if self.unet.config.time_cond_proj_dim is not None:
         | 
| 1279 | 
            +
                        guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
         | 
| 1280 | 
            +
                        timestep_cond = self.get_guidance_scale_embedding(
         | 
| 1281 | 
            +
                            guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
         | 
| 1282 | 
            +
                        ).to(device=device, dtype=latents.dtype)
         | 
| 1283 | 
            +
             | 
| 1284 | 
            +
                    # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
         | 
| 1285 | 
            +
                    extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
         | 
| 1286 | 
            +
             | 
| 1287 | 
            +
                    # 7.1 Create tensor stating which controlnets to keep
         | 
| 1288 | 
            +
                    controlnet_keep = []
         | 
| 1289 | 
            +
                    for i in range(len(timesteps)):
         | 
| 1290 | 
            +
                        keeps = [
         | 
| 1291 | 
            +
                            1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
         | 
| 1292 | 
            +
                            for s, e in zip(control_guidance_start, control_guidance_end)
         | 
| 1293 | 
            +
                        ]
         | 
| 1294 | 
            +
                        controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)
         | 
| 1295 | 
            +
             | 
| 1296 | 
            +
                    # 7.2 Prepare added time ids & embeddings
         | 
| 1297 | 
            +
                    if isinstance(image, list):
         | 
| 1298 | 
            +
                        original_size = original_size or image[0].shape[-2:]
         | 
| 1299 | 
            +
                    else:
         | 
| 1300 | 
            +
                        original_size = original_size or image.shape[-2:]
         | 
| 1301 | 
            +
                    target_size = target_size or (height, width)
         | 
| 1302 | 
            +
             | 
| 1303 | 
            +
                    add_text_embeds = pooled_prompt_embeds
         | 
| 1304 | 
            +
                    if self.text_encoder_2 is None:
         | 
| 1305 | 
            +
                        text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
         | 
| 1306 | 
            +
                    else:
         | 
| 1307 | 
            +
                        text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
         | 
| 1308 | 
            +
             | 
| 1309 | 
            +
                    add_time_ids = self._get_add_time_ids(
         | 
| 1310 | 
            +
                        original_size,
         | 
| 1311 | 
            +
                        crops_coords_top_left,
         | 
| 1312 | 
            +
                        target_size,
         | 
| 1313 | 
            +
                        dtype=prompt_embeds.dtype,
         | 
| 1314 | 
            +
                        text_encoder_projection_dim=text_encoder_projection_dim,
         | 
| 1315 | 
            +
                    )
         | 
| 1316 | 
            +
             | 
| 1317 | 
            +
                    if negative_original_size is not None and negative_target_size is not None:
         | 
| 1318 | 
            +
                        negative_add_time_ids = self._get_add_time_ids(
         | 
| 1319 | 
            +
                            negative_original_size,
         | 
| 1320 | 
            +
                            negative_crops_coords_top_left,
         | 
| 1321 | 
            +
                            negative_target_size,
         | 
| 1322 | 
            +
                            dtype=prompt_embeds.dtype,
         | 
| 1323 | 
            +
                            text_encoder_projection_dim=text_encoder_projection_dim,
         | 
| 1324 | 
            +
                        )
         | 
| 1325 | 
            +
                    else:
         | 
| 1326 | 
            +
                        negative_add_time_ids = add_time_ids
         | 
| 1327 | 
            +
             | 
| 1328 | 
            +
                    if self.do_classifier_free_guidance:
         | 
| 1329 | 
            +
                        prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
         | 
| 1330 | 
            +
                        add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
         | 
| 1331 | 
            +
                        add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
         | 
| 1332 | 
            +
             | 
| 1333 | 
            +
                    prompt_embeds = prompt_embeds.to(device)
         | 
| 1334 | 
            +
                    add_text_embeds = add_text_embeds.to(device)
         | 
| 1335 | 
            +
                    add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
         | 
| 1336 | 
            +
             | 
| 1337 | 
            +
                    # 8. Denoising loop
         | 
| 1338 | 
            +
                    num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
         | 
| 1339 | 
            +
                    is_unet_compiled = is_compiled_module(self.unet)
         | 
| 1340 | 
            +
                    is_controlnet_compiled = is_compiled_module(self.controlnet)
         | 
| 1341 | 
            +
                    is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1")
         | 
| 1342 | 
            +
                    with self.progress_bar(total=num_inference_steps) as progress_bar:
         | 
| 1343 | 
            +
                        for i, t in enumerate(timesteps):
         | 
| 1344 | 
            +
                            # Relevant thread:
         | 
| 1345 | 
            +
                            # https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428
         | 
| 1346 | 
            +
                            if (is_unet_compiled and is_controlnet_compiled) and is_torch_higher_equal_2_1:
         | 
| 1347 | 
            +
                                torch._inductor.cudagraph_mark_step_begin()
         | 
| 1348 | 
            +
                            # expand the latents if we are doing classifier free guidance
         | 
| 1349 | 
            +
                            latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
         | 
| 1350 | 
            +
                            latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
         | 
| 1351 | 
            +
             | 
| 1352 | 
            +
                            added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
         | 
| 1353 | 
            +
             | 
| 1354 | 
            +
                            # controlnet(s) inference
         | 
| 1355 | 
            +
                            if guess_mode and self.do_classifier_free_guidance:
         | 
| 1356 | 
            +
                                # Infer ControlNet only for the conditional batch.
         | 
| 1357 | 
            +
                                control_model_input = latents
         | 
| 1358 | 
            +
                                control_model_input = self.scheduler.scale_model_input(control_model_input, t)
         | 
| 1359 | 
            +
                                controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
         | 
| 1360 | 
            +
                                controlnet_added_cond_kwargs = {
         | 
| 1361 | 
            +
                                    "text_embeds": add_text_embeds.chunk(2)[1],
         | 
| 1362 | 
            +
                                    "time_ids": add_time_ids.chunk(2)[1],
         | 
| 1363 | 
            +
                                }
         | 
| 1364 | 
            +
                            else:
         | 
| 1365 | 
            +
                                control_model_input = latent_model_input
         | 
| 1366 | 
            +
                                controlnet_prompt_embeds = prompt_embeds
         | 
| 1367 | 
            +
                                controlnet_added_cond_kwargs = added_cond_kwargs
         | 
| 1368 | 
            +
             | 
| 1369 | 
            +
                            if isinstance(controlnet_keep[i], list):
         | 
| 1370 | 
            +
                                cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
         | 
| 1371 | 
            +
                            else:
         | 
| 1372 | 
            +
                                controlnet_cond_scale = controlnet_conditioning_scale
         | 
| 1373 | 
            +
                                if isinstance(controlnet_cond_scale, list):
         | 
| 1374 | 
            +
                                    controlnet_cond_scale = controlnet_cond_scale[0]
         | 
| 1375 | 
            +
                                cond_scale = controlnet_cond_scale * controlnet_keep[i]
         | 
| 1376 | 
            +
             | 
| 1377 | 
            +
                            down_block_res_samples, mid_block_res_sample = self.controlnet(
         | 
| 1378 | 
            +
                                control_model_input,
         | 
| 1379 | 
            +
                                t,
         | 
| 1380 | 
            +
                                encoder_hidden_states=controlnet_prompt_embeds,
         | 
| 1381 | 
            +
                                controlnet_cond=image,
         | 
| 1382 | 
            +
                                conditioning_scale=cond_scale,
         | 
| 1383 | 
            +
                                guess_mode=guess_mode,
         | 
| 1384 | 
            +
                                added_cond_kwargs=controlnet_added_cond_kwargs,
         | 
| 1385 | 
            +
                                return_dict=False,
         | 
| 1386 | 
            +
                            )
         | 
| 1387 | 
            +
             | 
| 1388 | 
            +
                            if guess_mode and self.do_classifier_free_guidance:
         | 
| 1389 | 
            +
                                # Infered ControlNet only for the conditional batch.
         | 
| 1390 | 
            +
                                # To apply the output of ControlNet to both the unconditional and conditional batches,
         | 
| 1391 | 
            +
                                # add 0 to the unconditional batch to keep it unchanged.
         | 
| 1392 | 
            +
                                down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
         | 
| 1393 | 
            +
                                mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
         | 
| 1394 | 
            +
             | 
| 1395 | 
            +
                            if ip_adapter_image is not None:
         | 
| 1396 | 
            +
                                added_cond_kwargs["image_embeds"] = image_embeds
         | 
| 1397 | 
            +
             | 
| 1398 | 
            +
                            # predict the noise residual
         | 
| 1399 | 
            +
                            noise_pred = self.unet(
         | 
| 1400 | 
            +
                                latent_model_input,
         | 
| 1401 | 
            +
                                t,
         | 
| 1402 | 
            +
                                encoder_hidden_states=prompt_embeds,
         | 
| 1403 | 
            +
                                timestep_cond=timestep_cond,
         | 
| 1404 | 
            +
                                cross_attention_kwargs=self.cross_attention_kwargs,
         | 
| 1405 | 
            +
                                down_block_additional_residuals=down_block_res_samples,
         | 
| 1406 | 
            +
                                mid_block_additional_residual=mid_block_res_sample,
         | 
| 1407 | 
            +
                                added_cond_kwargs=added_cond_kwargs,
         | 
| 1408 | 
            +
                                return_dict=False,
         | 
| 1409 | 
            +
                            )[0]
         | 
| 1410 | 
            +
             | 
| 1411 | 
            +
                            # perform guidance
         | 
| 1412 | 
            +
                            if self.do_classifier_free_guidance:
         | 
| 1413 | 
            +
                                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
         | 
| 1414 | 
            +
                                noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
         | 
| 1415 | 
            +
             | 
| 1416 | 
            +
                            # compute the previous noisy sample x_t -> x_t-1
         | 
| 1417 | 
            +
                            latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
         | 
| 1418 | 
            +
             | 
| 1419 | 
            +
                            if callback_on_step_end is not None:
         | 
| 1420 | 
            +
                                callback_kwargs = {}
         | 
| 1421 | 
            +
                                for k in callback_on_step_end_tensor_inputs:
         | 
| 1422 | 
            +
                                    callback_kwargs[k] = locals()[k]
         | 
| 1423 | 
            +
                                callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
         | 
| 1424 | 
            +
             | 
| 1425 | 
            +
                                latents = callback_outputs.pop("latents", latents)
         | 
| 1426 | 
            +
                                prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
         | 
| 1427 | 
            +
                                negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
         | 
| 1428 | 
            +
             | 
| 1429 | 
            +
                            # call the callback, if provided
         | 
| 1430 | 
            +
                            if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
         | 
| 1431 | 
            +
                                progress_bar.update()
         | 
| 1432 | 
            +
                                if callback is not None and i % callback_steps == 0:
         | 
| 1433 | 
            +
                                    step_idx = i // getattr(self.scheduler, "order", 1)
         | 
| 1434 | 
            +
                                    callback(step_idx, t, latents)
         | 
| 1435 | 
            +
             | 
| 1436 | 
            +
                    if not output_type == "latent":
         | 
| 1437 | 
            +
                        # make sure the VAE is in float32 mode, as it overflows in float16
         | 
| 1438 | 
            +
                        needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
         | 
| 1439 | 
            +
             | 
| 1440 | 
            +
                        if needs_upcasting:
         | 
| 1441 | 
            +
                            self.upcast_vae()
         | 
| 1442 | 
            +
                            latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
         | 
| 1443 | 
            +
             | 
| 1444 | 
            +
                        image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
         | 
| 1445 | 
            +
             | 
| 1446 | 
            +
                        # cast back to fp16 if needed
         | 
| 1447 | 
            +
                        if needs_upcasting:
         | 
| 1448 | 
            +
                            self.vae.to(dtype=torch.float16)
         | 
| 1449 | 
            +
                    else:
         | 
| 1450 | 
            +
                        image = latents
         | 
| 1451 | 
            +
             | 
| 1452 | 
            +
                    if not output_type == "latent":
         | 
| 1453 | 
            +
                        # apply watermark if available
         | 
| 1454 | 
            +
                        if self.watermark is not None:
         | 
| 1455 | 
            +
                            image = self.watermark.apply_watermark(image)
         | 
| 1456 | 
            +
             | 
| 1457 | 
            +
                        image = self.image_processor.postprocess(image, output_type=output_type)
         | 
| 1458 | 
            +
             | 
| 1459 | 
            +
                    # Offload all models
         | 
| 1460 | 
            +
                    self.maybe_free_model_hooks()
         | 
| 1461 | 
            +
             | 
| 1462 | 
            +
                    if not return_dict:
         | 
| 1463 | 
            +
                        return (image,)
         | 
| 1464 | 
            +
             | 
| 1465 | 
            +
                    return StableDiffusionXLPipelineOutput(images=image)
         | 

