brickfrog commited on
Commit
75775c4
·
verified ·
1 Parent(s): bd42afb

Upload folder using huggingface_hub

Browse files
Files changed (4) hide show
  1. .gitignore +5 -0
  2. README.md +1 -1
  3. app.py +1241 -165
  4. requirements.txt +4 -1
.gitignore CHANGED
@@ -165,4 +165,9 @@ cython_debug/
165
  .vscode
166
  .ruff_cache
167
  flagged
 
 
 
 
 
168
  *.csv
 
165
  .vscode
166
  .ruff_cache
167
  flagged
168
+ *.csv
169
+
170
+
171
+ uv.lock
172
+ *.apkg
173
  *.csv
README.md CHANGED
@@ -5,7 +5,7 @@ app_file: app.py
5
  requirements: requirements.txt
6
  python: 3.12
7
  sdk: gradio
8
- sdk_version: 4.44.0
9
  ---
10
 
11
  # AnkiGen - Anki Card Generator
 
5
  requirements: requirements.txt
6
  python: 3.12
7
  sdk: gradio
8
+ sdk_version: 5.13.1
9
  ---
10
 
11
  # AnkiGen - Anki Card Generator
app.py CHANGED
@@ -2,6 +2,19 @@ from openai import OpenAI
2
  from pydantic import BaseModel
3
  from typing import List, Optional
4
  import gradio as gr
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
 
7
  class Step(BaseModel):
@@ -31,6 +44,7 @@ class CardBack(BaseModel):
31
  class Card(BaseModel):
32
  front: CardFront
33
  back: CardBack
 
34
 
35
 
36
  class CardList(BaseModel):
@@ -38,235 +52,1297 @@ class CardList(BaseModel):
38
  cards: List[Card]
39
 
40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
  def structured_output_completion(
42
  client, model, response_format, system_prompt, user_prompt
43
  ):
 
 
 
 
 
 
 
 
44
  try:
45
- completion = client.beta.chat.completions.parse(
 
 
 
 
 
46
  model=model,
47
  messages=[
48
  {"role": "system", "content": system_prompt.strip()},
49
  {"role": "user", "content": user_prompt.strip()},
50
  ],
51
- response_format=response_format,
 
52
  )
53
 
54
- except Exception as e:
55
- print(f"An error occurred during the API call: {e}")
56
- return None
57
-
58
- try:
59
  if not hasattr(completion, "choices") or not completion.choices:
60
- print("No choices returned in the completion.")
61
  return None
62
 
63
  first_choice = completion.choices[0]
64
  if not hasattr(first_choice, "message"):
65
- print("No message found in the first choice.")
66
  return None
67
 
68
- if not hasattr(first_choice.message, "parsed"):
69
- print("Parsed message not available in the first choice.")
70
- return None
 
 
 
71
 
72
- return first_choice.message.parsed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73
 
74
  except Exception as e:
75
- print(f"An error occurred while processing the completion: {e}")
76
- raise gr.Error(f"Processing error: {e}")
 
77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78
 
79
  def generate_cards(
80
  api_key_input,
81
  subject,
 
82
  topic_number=1,
83
  cards_per_topic=2,
84
  preference_prompt="assume I'm a beginner",
85
  ):
86
- """
87
- Generates flashcards for a given subject.
88
-
89
- Parameters:
90
- - subject (str): The subject to generate cards for.
91
- - topic_number (int): Number of topics to generate.
92
- - cards_per_topic (int): Number of cards per topic.
93
- - preference_prompt (str): User preferences to consider.
94
-
95
- Returns:
96
- - List[List[str]]: A list of rows containing
97
- [topic, question, answer, explanation, example].
98
- """
99
-
100
- gr.Info("Starting process")
101
 
 
102
  if not api_key_input:
103
- return gr.Error("Error: OpenAI API key is required.")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
104
 
105
- client = OpenAI(api_key=api_key_input)
106
- model = "gpt-4o-mini"
 
 
 
 
 
 
 
 
 
 
 
 
 
107
 
108
- all_card_lists = []
 
 
 
 
109
 
110
- system_prompt = f"""
111
- You are an expert in {subject}, assisting the user to master the topic while
112
- keeping in mind the user's preferences: {preference_prompt}.
113
  """
114
 
115
  topic_prompt = f"""
116
- Generate the top {topic_number} important subjects to know on {subject} in
117
- order of ascending difficulty.
 
 
 
 
 
 
 
 
 
118
  """
119
 
120
  try:
 
121
  topics_response = structured_output_completion(
122
- client, model, Topics, system_prompt, topic_prompt
 
 
 
 
123
  )
124
- if topics_response is None:
125
- print("Failed to generate topics.")
126
- return []
127
- if not hasattr(topics_response, "result") or not topics_response.result:
128
- print("Invalid topics response format.")
129
- return []
130
- topic_list = [
131
- item for subtopic in topics_response.result for item in subtopic.result
132
- ][:topic_number]
133
- except Exception as e:
134
- raise gr.Error(f"Topic generation failed due to {e}")
135
 
136
- for topic in topic_list:
137
- card_prompt = f"""
138
- You are to generate {cards_per_topic} cards on {subject}: "{topic}"
139
- keeping in mind the user's preferences: {preference_prompt}.
140
 
141
- Questions should cover both sample problems and concepts.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
142
 
143
- Use the explanation field to help the user understand the reason behind things
144
- and maximize learning. Additionally, offer tips (performance, gotchas, etc.).
 
 
 
145
  """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
146
 
147
- try:
148
- cards = structured_output_completion(
149
- client, model, CardList, system_prompt, card_prompt
150
- )
151
- if cards is None:
152
- print(f"Failed to generate cards for topic '{topic}'.")
153
- continue
154
- if not hasattr(cards, "topic") or not hasattr(cards, "cards"):
155
- print(f"Invalid card response format for topic '{topic}'.")
156
- continue
157
- all_card_lists.append(cards)
158
- except Exception as e:
159
- print(f"An error occurred while generating cards for topic '{topic}': {e}")
160
- continue
161
 
162
- flattened_data = []
163
 
164
- for card_list_index, card_list in enumerate(all_card_lists, start=1):
165
- try:
166
- topic = card_list.topic
167
- # Get the total number of cards in this list to determine padding
168
- total_cards = len(card_list.cards)
169
- # Calculate the number of digits needed for padding
170
- padding = len(str(total_cards))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
171
 
172
- for card_index, card in enumerate(card_list.cards, start=1):
173
- # Format the index with zero-padding
174
- index = f"{card_list_index}.{card_index:0{padding}}"
175
- question = card.front.question
176
- answer = card.back.answer
177
- explanation = card.back.explanation
178
- example = card.back.example
179
- row = [index, topic, question, answer, explanation, example]
180
- flattened_data.append(row)
181
- except Exception as e:
182
- print(f"An error occurred while processing card {index}: {e}")
183
- continue
184
 
185
- return flattened_data
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
186
 
187
 
188
- def export_csv(d):
189
- MIN_ROWS = 2
 
 
 
 
 
 
190
 
191
- if len(d) < MIN_ROWS:
192
- gr.Warning(f"The dataframe has fewer than {MIN_ROWS} rows. Nothing to export.")
193
- return None
 
194
 
195
- gr.Info("Exporting...")
196
- d.to_csv("anki_deck.csv", index=False)
197
- return gr.File(value="anki_deck.csv", visible=True)
 
 
 
 
 
198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
199
 
200
  with gr.Blocks(
201
- gr.themes.Soft(),
202
- title="AnkiGen",
203
- css="#footer{display:none !important} .tall-dataframe{height: 800px !important}"
 
 
 
 
 
 
 
204
  ) as ankigen:
205
- gr.Markdown("# 📚 AnkiGen - Anki Card Generator")
206
- gr.Markdown("#### Generate an LLM generated Anki comptible csv based on your subject and preferences.") #noqa
 
 
 
207
 
208
- with gr.Row():
209
- with gr.Column(scale=1):
210
- gr.Markdown("### Configuration")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
211
 
212
- api_key_input = gr.Textbox(
213
- label="OpenAI API Key",
214
- type="password",
215
- placeholder="Enter your OpenAI API key",
216
- )
217
- subject = gr.Textbox(
218
- label="Subject",
219
- placeholder="Enter the subject, e.g., 'Basic SQL Concepts'",
220
- )
221
- topic_number = gr.Slider(
222
- label="Number of Topics", minimum=2, maximum=20, step=1, value=2
223
- )
224
- cards_per_topic = gr.Slider(
225
- label="Cards per Topic", minimum=2, maximum=30, step=1, value=3
226
- )
227
- preference_prompt = gr.Textbox(
228
- label="Preference Prompt",
229
- placeholder=
230
- """Any preferences? For example: Learning level, e.g., "Assume I'm a beginner" or "Target an advanced audience" Content scope, e.g., "Only cover up until subqueries in SQL" or "Focus on organic chemistry basics""", #noqa
231
- )
232
- generate_button = gr.Button("Generate Cards")
233
- with gr.Column(scale=2):
234
- gr.Markdown("### Generated Cards")
235
- gr.Markdown(
236
- """
237
- Subject to change: currently exports a .csv with the following fields, you can
238
- create a new note type with these fields to handle importing.:
239
- <b>Index, Topic, Question, Answer, Explanation, Example</b>
240
- """
241
- )
242
- output = gr.Dataframe(
243
- headers=[
244
- "Index",
245
- "Topic",
246
- "Question",
247
- "Answer",
248
- "Explanation",
249
- "Example",
250
- ],
251
- interactive=False,
252
- elem_classes="tall-dataframe"
253
- )
254
- export_button = gr.Button("Export to CSV")
255
- download_link = gr.File(interactive=False, visible=False)
256
-
257
- generate_button.click(
258
- fn=generate_cards,
259
- inputs=[
260
- api_key_input,
261
- subject,
262
- topic_number,
263
- cards_per_topic,
264
- preference_prompt,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
265
  ],
266
- outputs=output,
267
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
268
 
269
- export_button.click(fn=export_csv, inputs=output, outputs=download_link)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
270
 
271
  if __name__ == "__main__":
 
272
  ankigen.launch(share=False, favicon_path="./favicon.ico")
 
2
  from pydantic import BaseModel
3
  from typing import List, Optional
4
  import gradio as gr
5
+ import os
6
+ import logging
7
+ from logging.handlers import RotatingFileHandler
8
+ import sys
9
+ from functools import lru_cache
10
+ from tenacity import retry, stop_after_attempt, wait_exponential, retry_if_exception_type
11
+ import hashlib
12
+ import genanki
13
+ import random
14
+ import json
15
+ import tempfile
16
+ from pathlib import Path
17
+ import pandas as pd
18
 
19
 
20
  class Step(BaseModel):
 
44
  class Card(BaseModel):
45
  front: CardFront
46
  back: CardBack
47
+ metadata: Optional[dict] = None
48
 
49
 
50
  class CardList(BaseModel):
 
52
  cards: List[Card]
53
 
54
 
55
+ class ConceptBreakdown(BaseModel):
56
+ main_concept: str
57
+ prerequisites: List[str]
58
+ learning_outcomes: List[str]
59
+ common_misconceptions: List[str]
60
+ difficulty_level: str # "beginner", "intermediate", "advanced"
61
+
62
+
63
+ class CardGeneration(BaseModel):
64
+ concept: str
65
+ thought_process: str
66
+ verification_steps: List[str]
67
+ card: Card
68
+
69
+
70
+ class LearningSequence(BaseModel):
71
+ topic: str
72
+ concepts: List[ConceptBreakdown]
73
+ cards: List[CardGeneration]
74
+ suggested_study_order: List[str]
75
+ review_recommendations: List[str]
76
+
77
+
78
+ def setup_logging():
79
+ """Configure logging to both file and console"""
80
+ logger = logging.getLogger('ankigen')
81
+ logger.setLevel(logging.DEBUG)
82
+
83
+ # Create formatters
84
+ detailed_formatter = logging.Formatter(
85
+ '%(asctime)s - %(name)s - %(levelname)s - %(message)s'
86
+ )
87
+ simple_formatter = logging.Formatter(
88
+ '%(levelname)s: %(message)s'
89
+ )
90
+
91
+ # File handler (detailed logging)
92
+ file_handler = RotatingFileHandler(
93
+ 'ankigen.log',
94
+ maxBytes=1024*1024, # 1MB
95
+ backupCount=5
96
+ )
97
+ file_handler.setLevel(logging.DEBUG)
98
+ file_handler.setFormatter(detailed_formatter)
99
+
100
+ # Console handler (info and above)
101
+ console_handler = logging.StreamHandler(sys.stdout)
102
+ console_handler.setLevel(logging.INFO)
103
+ console_handler.setFormatter(simple_formatter)
104
+
105
+ # Add handlers to logger
106
+ logger.addHandler(file_handler)
107
+ logger.addHandler(console_handler)
108
+
109
+ return logger
110
+
111
+
112
+ # Initialize logger
113
+ logger = setup_logging()
114
+
115
+
116
+ # Replace the caching implementation with a proper cache dictionary
117
+ _response_cache = {} # Global cache dictionary
118
+
119
+ @lru_cache(maxsize=100)
120
+ def get_cached_response(cache_key: str):
121
+ """Get response from cache"""
122
+ return _response_cache.get(cache_key)
123
+
124
+ def set_cached_response(cache_key: str, response):
125
+ """Set response in cache"""
126
+ _response_cache[cache_key] = response
127
+
128
+ def create_cache_key(prompt: str, model: str) -> str:
129
+ """Create a unique cache key for the API request"""
130
+ return hashlib.md5(f"{model}:{prompt}".encode()).hexdigest()
131
+
132
+
133
+ # Add retry decorator for API calls
134
+ @retry(
135
+ stop=stop_after_attempt(3),
136
+ wait=wait_exponential(multiplier=1, min=4, max=10),
137
+ retry=retry_if_exception_type(Exception),
138
+ before_sleep=lambda retry_state: logger.warning(
139
+ f"Retrying API call (attempt {retry_state.attempt_number})"
140
+ )
141
+ )
142
  def structured_output_completion(
143
  client, model, response_format, system_prompt, user_prompt
144
  ):
145
+ """Make API call with retry logic and caching"""
146
+ cache_key = create_cache_key(f"{system_prompt}:{user_prompt}", model)
147
+ cached_response = get_cached_response(cache_key)
148
+
149
+ if cached_response is not None:
150
+ logger.info("Using cached response")
151
+ return cached_response
152
+
153
  try:
154
+ logger.debug(f"Making API call with model {model}")
155
+
156
+ # Add JSON instruction to system prompt
157
+ system_prompt = f"{system_prompt}\nProvide your response as a JSON object matching the specified schema."
158
+
159
+ completion = client.chat.completions.create(
160
  model=model,
161
  messages=[
162
  {"role": "system", "content": system_prompt.strip()},
163
  {"role": "user", "content": user_prompt.strip()},
164
  ],
165
+ response_format={"type": "json_object"},
166
+ temperature=0.7
167
  )
168
 
 
 
 
 
 
169
  if not hasattr(completion, "choices") or not completion.choices:
170
+ logger.warning("No choices returned in the completion.")
171
  return None
172
 
173
  first_choice = completion.choices[0]
174
  if not hasattr(first_choice, "message"):
175
+ logger.warning("No message found in the first choice.")
176
  return None
177
 
178
+ # Parse the JSON response
179
+ result = json.loads(first_choice.message.content)
180
+
181
+ # Cache the successful response
182
+ set_cached_response(cache_key, result)
183
+ return result
184
 
185
+ except Exception as e:
186
+ logger.error(f"API call failed: {str(e)}", exc_info=True)
187
+ raise
188
+
189
+
190
+ def generate_cards_batch(
191
+ client,
192
+ model,
193
+ topic,
194
+ num_cards,
195
+ system_prompt,
196
+ batch_size=3
197
+ ):
198
+ """Generate a batch of cards for a topic"""
199
+ cards_prompt = f"""
200
+ Generate {num_cards} flashcards for the topic: {topic}
201
+ Return your response as a JSON object with the following structure:
202
+ {{
203
+ "cards": [
204
+ {{
205
+ "front": {{
206
+ "question": "question text"
207
+ }},
208
+ "back": {{
209
+ "answer": "concise answer",
210
+ "explanation": "detailed explanation",
211
+ "example": "practical example"
212
+ }},
213
+ "metadata": {{
214
+ "prerequisites": ["list", "of", "prerequisites"],
215
+ "learning_outcomes": ["list", "of", "outcomes"],
216
+ "misconceptions": ["list", "of", "misconceptions"],
217
+ "difficulty": "beginner/intermediate/advanced"
218
+ }}
219
+ }}
220
+ ]
221
+ }}
222
+ """
223
+
224
+ try:
225
+ logger.info(f"Generated learning sequence for {topic}")
226
+ response = structured_output_completion(
227
+ client,
228
+ model,
229
+ {"type": "json_object"},
230
+ system_prompt,
231
+ cards_prompt
232
+ )
233
+
234
+ if not response or "cards" not in response:
235
+ logger.error("Invalid cards response format")
236
+ raise ValueError("Failed to generate cards. Please try again.")
237
+
238
+ # Convert the JSON response into Card objects
239
+ cards = []
240
+ for card_data in response["cards"]:
241
+ card = Card(
242
+ front=CardFront(**card_data["front"]),
243
+ back=CardBack(**card_data["back"]),
244
+ metadata=card_data.get("metadata", {})
245
+ )
246
+ cards.append(card)
247
+
248
+ return cards
249
 
250
  except Exception as e:
251
+ logger.error(f"Failed to generate cards batch: {str(e)}")
252
+ raise
253
+
254
 
255
+ # Add near the top with other constants
256
+ AVAILABLE_MODELS = [
257
+ {
258
+ "value": "gpt-4o-mini", # Default model
259
+ "label": "gpt-4o Mini (Fastest)",
260
+ "description": "Balanced speed and quality"
261
+ },
262
+ {
263
+ "value": "gpt-4o",
264
+ "label": "gpt-4o (Better Quality)",
265
+ "description": "Higher quality, slower generation"
266
+ },
267
+ {
268
+ "value": "o1",
269
+ "label": "o1 (Best Quality)",
270
+ "description": "Highest quality, longest generation time"
271
+ }
272
+ ]
273
+
274
+ GENERATION_MODES = [
275
+ {
276
+ "value": "subject",
277
+ "label": "Single Subject",
278
+ "description": "Generate cards for a specific topic"
279
+ },
280
+ {
281
+ "value": "path",
282
+ "label": "Learning Path",
283
+ "description": "Break down a job description or learning goal into subjects"
284
+ }
285
+ ]
286
 
287
  def generate_cards(
288
  api_key_input,
289
  subject,
290
+ model_name="gpt-4o-mini",
291
  topic_number=1,
292
  cards_per_topic=2,
293
  preference_prompt="assume I'm a beginner",
294
  ):
295
+ logger.info(f"Starting card generation for subject: {subject}")
296
+ logger.debug(f"Parameters: topics={topic_number}, cards_per_topic={cards_per_topic}")
 
 
 
 
 
 
 
 
 
 
 
 
 
297
 
298
+ # Input validation
299
  if not api_key_input:
300
+ logger.warning("No API key provided")
301
+ raise gr.Error("OpenAI API key is required")
302
+ if not api_key_input.startswith("sk-"):
303
+ logger.warning("Invalid API key format")
304
+ raise gr.Error("Invalid API key format. OpenAI keys should start with 'sk-'")
305
+ if not subject.strip():
306
+ logger.warning("No subject provided")
307
+ raise gr.Error("Subject is required")
308
+
309
+ gr.Info("🚀 Starting card generation...")
310
+
311
+ try:
312
+ logger.debug("Initializing OpenAI client")
313
+ client = OpenAI(api_key=api_key_input)
314
+ except Exception as e:
315
+ logger.error(f"Failed to initialize OpenAI client: {str(e)}", exc_info=True)
316
+ raise gr.Error(f"Failed to initialize OpenAI client: {str(e)}")
317
 
318
+ model = model_name
319
+ flattened_data = []
320
+ total = 0
321
+
322
+ progress_tracker = gr.Progress(track_tqdm=True)
323
+
324
+ system_prompt = f"""
325
+ You are an expert educator in {subject}, creating an optimized learning sequence.
326
+ Your goal is to:
327
+ 1. Break down the subject into logical concepts
328
+ 2. Identify prerequisites and learning outcomes
329
+ 3. Generate cards that build upon each other
330
+ 4. Address and correct common misconceptions
331
+ 5. Include verification steps to minimize hallucinations
332
+ 6. Provide a recommended study order
333
 
334
+ For explanations and examples:
335
+ - Keep explanations in plain text
336
+ - Format code examples with triple backticks (```)
337
+ - Separate conceptual examples from code examples
338
+ - Use clear, concise language
339
 
340
+ Keep in mind the user's preferences: {preference_prompt}
 
 
341
  """
342
 
343
  topic_prompt = f"""
344
+ Generate the top {topic_number} important subjects to know about {subject} in
345
+ order of ascending difficulty. Return your response as a JSON object with the following structure:
346
+ {{
347
+ "topics": [
348
+ {{
349
+ "name": "topic name",
350
+ "difficulty": "beginner/intermediate/advanced",
351
+ "description": "brief description"
352
+ }}
353
+ ]
354
+ }}
355
  """
356
 
357
  try:
358
+ logger.info("Generating topics...")
359
  topics_response = structured_output_completion(
360
+ client,
361
+ model,
362
+ {"type": "json_object"},
363
+ system_prompt,
364
+ topic_prompt
365
  )
366
+
367
+ if not topics_response or "topics" not in topics_response:
368
+ logger.error("Invalid topics response format")
369
+ raise gr.Error("Failed to generate topics. Please try again.")
 
 
 
 
 
 
 
370
 
371
+ topics = topics_response["topics"]
372
+
373
+ gr.Info(f"✨ Generated {len(topics)} topics successfully!")
 
374
 
375
+ # Generate cards for each topic
376
+ for i, topic in enumerate(progress_tracker.tqdm(topics, desc="Generating cards")):
377
+ progress_html = f"""
378
+ <div style="text-align: center">
379
+ <p>Generating cards for topic {i+1}/{len(topics)}: {topic["name"]}</p>
380
+ <p>Cards generated so far: {total}</p>
381
+ </div>
382
+ """
383
+
384
+ try:
385
+ cards = generate_cards_batch(
386
+ client,
387
+ model,
388
+ topic["name"],
389
+ cards_per_topic,
390
+ system_prompt,
391
+ batch_size=3
392
+ )
393
+
394
+ if cards:
395
+ for card_index, card in enumerate(cards, start=1):
396
+ index = f"{i+1}.{card_index}"
397
+ metadata = card.metadata or {}
398
+
399
+ row = [
400
+ index,
401
+ topic["name"],
402
+ card.front.question,
403
+ card.back.answer,
404
+ card.back.explanation,
405
+ card.back.example,
406
+ metadata.get("prerequisites", []),
407
+ metadata.get("learning_outcomes", []),
408
+ metadata.get("misconceptions", []),
409
+ metadata.get("difficulty", "beginner")
410
+ ]
411
+ flattened_data.append(row)
412
+ total += 1
413
+
414
+ gr.Info(f"✅ Generated {len(cards)} cards for {topic['name']}")
415
+
416
+ except Exception as e:
417
+ logger.error(f"Failed to generate cards for topic {topic['name']}: {str(e)}")
418
+ gr.Warning(f"Failed to generate cards for '{topic['name']}'")
419
+ continue
420
 
421
+ final_html = f"""
422
+ <div style="text-align: center">
423
+ <p>✅ Generation complete!</p>
424
+ <p>Total cards generated: {total}</p>
425
+ </div>
426
  """
427
+
428
+ # Convert to DataFrame with all columns
429
+ df = pd.DataFrame(
430
+ flattened_data,
431
+ columns=[
432
+ "Index",
433
+ "Topic",
434
+ "Question",
435
+ "Answer",
436
+ "Explanation",
437
+ "Example",
438
+ "Prerequisites",
439
+ "Learning_Outcomes",
440
+ "Common_Misconceptions",
441
+ "Difficulty"
442
+ ]
443
+ )
444
+
445
+ return df, final_html, total
446
 
447
+ except Exception as e:
448
+ logger.error(f"Card generation failed: {str(e)}", exc_info=True)
449
+ raise gr.Error(f"Card generation failed: {str(e)}")
 
 
 
 
 
 
 
 
 
 
 
450
 
 
451
 
452
+ # Update the BASIC_MODEL definition with enhanced CSS/HTML
453
+ BASIC_MODEL = genanki.Model(
454
+ random.randrange(1 << 30, 1 << 31),
455
+ 'AnkiGen Enhanced',
456
+ fields=[
457
+ {'name': 'Question'},
458
+ {'name': 'Answer'},
459
+ {'name': 'Explanation'},
460
+ {'name': 'Example'},
461
+ {'name': 'Prerequisites'},
462
+ {'name': 'Learning_Outcomes'},
463
+ {'name': 'Common_Misconceptions'},
464
+ {'name': 'Difficulty'}
465
+ ],
466
+ templates=[{
467
+ 'name': 'Card 1',
468
+ 'qfmt': '''
469
+ <div class="card question-side">
470
+ <div class="difficulty-indicator {{Difficulty}}"></div>
471
+ <div class="content">
472
+ <div class="question">{{Question}}</div>
473
+ <div class="prerequisites" onclick="event.stopPropagation();">
474
+ <div class="prerequisites-toggle">Show Prerequisites</div>
475
+ <div class="prerequisites-content">{{Prerequisites}}</div>
476
+ </div>
477
+ </div>
478
+ </div>
479
+ <script>
480
+ document.querySelector('.prerequisites-toggle').addEventListener('click', function(e) {
481
+ e.stopPropagation();
482
+ this.parentElement.classList.toggle('show');
483
+ });
484
+ </script>
485
+ ''',
486
+ 'afmt': '''
487
+ <div class="card answer-side">
488
+ <div class="content">
489
+ <div class="question-section">
490
+ <div class="question">{{Question}}</div>
491
+ <div class="prerequisites">
492
+ <strong>Prerequisites:</strong> {{Prerequisites}}
493
+ </div>
494
+ </div>
495
+ <hr>
496
+
497
+ <div class="answer-section">
498
+ <h3>Answer</h3>
499
+ <div class="answer">{{Answer}}</div>
500
+ </div>
501
+
502
+ <div class="explanation-section">
503
+ <h3>Explanation</h3>
504
+ <div class="explanation-text">{{Explanation}}</div>
505
+ </div>
506
+
507
+ <div class="example-section">
508
+ <h3>Example</h3>
509
+ <div class="example-text"></div>
510
+ <pre><code>{{Example}}</code></pre>
511
+ </div>
512
+
513
+ <div class="metadata-section">
514
+ <div class="learning-outcomes">
515
+ <h3>Learning Outcomes</h3>
516
+ <div>{{Learning_Outcomes}}</div>
517
+ </div>
518
+
519
+ <div class="misconceptions">
520
+ <h3>Common Misconceptions - Debunked</h3>
521
+ <div>{{Common_Misconceptions}}</div>
522
+ </div>
523
+
524
+ <div class="difficulty">
525
+ <h3>Difficulty Level</h3>
526
+ <div>{{Difficulty}}</div>
527
+ </div>
528
+ </div>
529
+ </div>
530
+ </div>
531
+ ''',
532
+ }],
533
+ css='''
534
+ /* Base styles */
535
+ .card {
536
+ font-family: 'Inter', system-ui, -apple-system, sans-serif;
537
+ font-size: 16px;
538
+ line-height: 1.6;
539
+ color: #1a1a1a;
540
+ max-width: 800px;
541
+ margin: 0 auto;
542
+ padding: 20px;
543
+ background: #ffffff;
544
+ }
545
+
546
+ @media (max-width: 768px) {
547
+ .card {
548
+ font-size: 14px;
549
+ padding: 15px;
550
+ }
551
+ }
552
+
553
+ /* Question side */
554
+ .question-side {
555
+ position: relative;
556
+ min-height: 200px;
557
+ }
558
+
559
+ .difficulty-indicator {
560
+ position: absolute;
561
+ top: 10px;
562
+ right: 10px;
563
+ width: 10px;
564
+ height: 10px;
565
+ border-radius: 50%;
566
+ }
567
+
568
+ .difficulty-indicator.beginner { background: #4ade80; }
569
+ .difficulty-indicator.intermediate { background: #fbbf24; }
570
+ .difficulty-indicator.advanced { background: #ef4444; }
571
+
572
+ .question {
573
+ font-size: 1.3em;
574
+ font-weight: 600;
575
+ color: #2563eb;
576
+ margin-bottom: 1.5em;
577
+ }
578
+
579
+ .prerequisites {
580
+ margin-top: 1em;
581
+ font-size: 0.9em;
582
+ color: #666;
583
+ }
584
+
585
+ .prerequisites-toggle {
586
+ color: #2563eb;
587
+ cursor: pointer;
588
+ text-decoration: underline;
589
+ }
590
+
591
+ .prerequisites-content {
592
+ display: none;
593
+ margin-top: 0.5em;
594
+ padding: 0.5em;
595
+ background: #f8fafc;
596
+ border-radius: 4px;
597
+ }
598
+
599
+ .prerequisites.show .prerequisites-content {
600
+ display: block;
601
+ }
602
+
603
+ /* Answer side */
604
+ .answer-section,
605
+ .explanation-section,
606
+ .example-section {
607
+ margin: 1.5em 0;
608
+ padding: 1.2em;
609
+ border-radius: 8px;
610
+ box-shadow: 0 2px 4px rgba(0,0,0,0.05);
611
+ }
612
+
613
+ .answer-section {
614
+ background: #f0f9ff;
615
+ border-left: 4px solid #2563eb;
616
+ }
617
+
618
+ .explanation-section {
619
+ background: #f0fdf4;
620
+ border-left: 4px solid #4ade80;
621
+ }
622
+
623
+ .example-section {
624
+ background: #fff7ed;
625
+ border-left: 4px solid #f97316;
626
+ }
627
+
628
+ /* Code blocks */
629
+ pre code {
630
+ display: block;
631
+ padding: 1em;
632
+ background: #1e293b;
633
+ color: #e2e8f0;
634
+ border-radius: 6px;
635
+ overflow-x: auto;
636
+ font-family: 'Fira Code', 'Consolas', monospace;
637
+ font-size: 0.9em;
638
+ }
639
+
640
+ /* Metadata tabs */
641
+ .metadata-tabs {
642
+ margin-top: 2em;
643
+ border: 1px solid #e5e7eb;
644
+ border-radius: 8px;
645
+ overflow: hidden;
646
+ }
647
+
648
+ .tab-buttons {
649
+ display: flex;
650
+ background: #f8fafc;
651
+ border-bottom: 1px solid #e5e7eb;
652
+ }
653
+
654
+ .tab-btn {
655
+ flex: 1;
656
+ padding: 0.8em;
657
+ border: none;
658
+ background: none;
659
+ cursor: pointer;
660
+ font-weight: 500;
661
+ color: #64748b;
662
+ transition: all 0.2s;
663
+ }
664
+
665
+ .tab-btn:hover {
666
+ background: #f1f5f9;
667
+ }
668
+
669
+ .tab-btn.active {
670
+ color: #2563eb;
671
+ background: #fff;
672
+ border-bottom: 2px solid #2563eb;
673
+ }
674
+
675
+ .tab-content {
676
+ display: none;
677
+ padding: 1.2em;
678
+ }
679
+
680
+ .tab-content.active {
681
+ display: block;
682
+ }
683
+
684
+ /* Responsive design */
685
+ @media (max-width: 640px) {
686
+ .tab-buttons {
687
+ flex-direction: column;
688
+ }
689
+
690
+ .tab-btn {
691
+ width: 100%;
692
+ text-align: left;
693
+ padding: 0.6em;
694
+ }
695
+
696
+ .answer-section,
697
+ .explanation-section,
698
+ .example-section {
699
+ padding: 1em;
700
+ margin: 1em 0;
701
+ }
702
+ }
703
+
704
+ /* Animations */
705
+ @keyframes fadeIn {
706
+ from { opacity: 0; }
707
+ to { opacity: 1; }
708
+ }
709
+
710
+ .card {
711
+ animation: fadeIn 0.3s ease-in-out;
712
+ }
713
+
714
+ .tab-content.active {
715
+ animation: fadeIn 0.2s ease-in-out;
716
+ }
717
+ '''
718
+ )
719
+
720
+ # Split the export functions
721
+ def export_csv(data):
722
+ """Export the generated cards as a CSV file"""
723
+ if data is None:
724
+ raise gr.Error("No data to export. Please generate cards first.")
725
+
726
+ if len(data) < 2: # Minimum 2 cards
727
+ raise gr.Error("Need at least 2 cards to export.")
728
 
729
+ try:
730
+ gr.Info("💾 Exporting to CSV...")
731
+ csv_path = "anki_cards.csv"
732
+ data.to_csv(csv_path, index=False)
733
+ gr.Info("✅ CSV export complete!")
734
+ return gr.File(value=csv_path, visible=True)
735
+
736
+ except Exception as e:
737
+ logger.error(f"Failed to export CSV: {str(e)}", exc_info=True)
738
+ raise gr.Error(f"Failed to export CSV: {str(e)}")
 
 
739
 
740
+ def export_deck(data, subject):
741
+ """Export the generated cards as an Anki deck with pedagogical metadata"""
742
+ if data is None:
743
+ raise gr.Error("No data to export. Please generate cards first.")
744
+
745
+ if len(data) < 2: # Minimum 2 cards
746
+ raise gr.Error("Need at least 2 cards to export.")
747
+
748
+ try:
749
+ gr.Info("💾 Creating Anki deck...")
750
+
751
+ deck_id = random.randrange(1 << 30, 1 << 31)
752
+ deck = genanki.Deck(deck_id, f"AnkiGen - {subject}")
753
+
754
+ records = data.to_dict('records')
755
+
756
+ # Update the model to include metadata fields
757
+ global BASIC_MODEL
758
+ BASIC_MODEL = genanki.Model(
759
+ random.randrange(1 << 30, 1 << 31),
760
+ 'AnkiGen Enhanced',
761
+ fields=[
762
+ {'name': 'Question'},
763
+ {'name': 'Answer'},
764
+ {'name': 'Explanation'},
765
+ {'name': 'Example'},
766
+ {'name': 'Prerequisites'},
767
+ {'name': 'Learning_Outcomes'},
768
+ {'name': 'Common_Misconceptions'},
769
+ {'name': 'Difficulty'}
770
+ ],
771
+ templates=[{
772
+ 'name': 'Card 1',
773
+ 'qfmt': '''
774
+ <div class="card question">
775
+ <div class="content">{{Question}}</div>
776
+ <div class="prerequisites">Prerequisites: {{Prerequisites}}</div>
777
+ </div>
778
+ ''',
779
+ 'afmt': '''
780
+ <div class="card answer">
781
+ <div class="question">{{Question}}</div>
782
+ <hr>
783
+ <div class="content">
784
+ <div class="answer-section">
785
+ <h3>Answer:</h3>
786
+ <div>{{Answer}}</div>
787
+ </div>
788
+
789
+ <div class="explanation-section">
790
+ <h3>Explanation:</h3>
791
+ <div>{{Explanation}}</div>
792
+ </div>
793
+
794
+ <div class="example-section">
795
+ <h3>Example:</h3>
796
+ <pre><code>{{Example}}</code></pre>
797
+ </div>
798
+
799
+ <div class="metadata-section">
800
+ <h3>Prerequisites:</h3>
801
+ <div>{{Prerequisites}}</div>
802
+
803
+ <h3>Learning Outcomes:</h3>
804
+ <div>{{Learning_Outcomes}}</div>
805
+
806
+ <h3>Watch out for:</h3>
807
+ <div>{{Common_Misconceptions}}</div>
808
+
809
+ <h3>Difficulty Level:</h3>
810
+ <div>{{Difficulty}}</div>
811
+ </div>
812
+ </div>
813
+ </div>
814
+ '''
815
+ }],
816
+ css='''
817
+ .card {
818
+ font-family: 'Inter', system-ui, -apple-system, sans-serif;
819
+ font-size: 16px;
820
+ line-height: 1.6;
821
+ color: #1a1a1a;
822
+ max-width: 800px;
823
+ margin: 0 auto;
824
+ padding: 20px;
825
+ background: #ffffff;
826
+ }
827
+
828
+ .question {
829
+ font-size: 1.3em;
830
+ font-weight: 600;
831
+ color: #2563eb;
832
+ margin-bottom: 1.5em;
833
+ }
834
+
835
+ .prerequisites {
836
+ font-size: 0.9em;
837
+ color: #666;
838
+ margin-top: 1em;
839
+ font-style: italic;
840
+ }
841
+
842
+ .answer-section,
843
+ .explanation-section,
844
+ .example-section {
845
+ margin: 1.5em 0;
846
+ padding: 1.2em;
847
+ border-radius: 8px;
848
+ box-shadow: 0 2px 4px rgba(0,0,0,0.05);
849
+ }
850
+
851
+ .answer-section {
852
+ background: #f0f9ff;
853
+ border-left: 4px solid #2563eb;
854
+ }
855
+
856
+ .explanation-section {
857
+ background: #f0fdf4;
858
+ border-left: 4px solid #4ade80;
859
+ }
860
+
861
+ .example-section {
862
+ background: #fff7ed;
863
+ border-left: 4px solid #f97316;
864
+ }
865
+
866
+ .metadata-section {
867
+ background: #f8f9fa;
868
+ padding: 1em;
869
+ border-radius: 6px;
870
+ margin: 1em 0;
871
+ }
872
+
873
+ pre code {
874
+ display: block;
875
+ padding: 1em;
876
+ background: #1e293b;
877
+ color: #e2e8f0;
878
+ border-radius: 6px;
879
+ overflow-x: auto;
880
+ font-family: 'Fira Code', 'Consolas', monospace;
881
+ font-size: 0.9em;
882
+ }
883
+ '''
884
+ )
885
+
886
+ # Add notes to the deck
887
+ for record in records:
888
+ note = genanki.Note(
889
+ model=BASIC_MODEL,
890
+ fields=[
891
+ str(record['Question']),
892
+ str(record['Answer']),
893
+ str(record['Explanation']),
894
+ str(record['Example']),
895
+ str(record['Prerequisites']),
896
+ str(record['Learning_Outcomes']),
897
+ str(record['Common_Misconceptions']),
898
+ str(record['Difficulty'])
899
+ ]
900
+ )
901
+ deck.add_note(note)
902
+
903
+ # Create a temporary directory for the package
904
+ with tempfile.TemporaryDirectory() as temp_dir:
905
+ output_path = Path(temp_dir) / "anki_deck.apkg"
906
+ package = genanki.Package(deck)
907
+ package.write_to_file(output_path)
908
+
909
+ # Copy to a more permanent location
910
+ final_path = "anki_deck.apkg"
911
+ with open(output_path, 'rb') as src, open(final_path, 'wb') as dst:
912
+ dst.write(src.read())
913
+
914
+ gr.Info("✅ Anki deck export complete!")
915
+ return gr.File(value=final_path, visible=True)
916
+
917
+ except Exception as e:
918
+ logger.error(f"Failed to export Anki deck: {str(e)}", exc_info=True)
919
+ raise gr.Error(f"Failed to export Anki deck: {str(e)}")
920
 
921
 
922
+ # Add this near the top where we define our CSS
923
+ js_storage = """
924
+ async () => {
925
+ // Load decks from localStorage
926
+ const loadDecks = () => {
927
+ const decks = localStorage.getItem('ankigen_decks');
928
+ return decks ? JSON.parse(decks) : [];
929
+ };
930
 
931
+ // Save decks to localStorage
932
+ const saveDecks = (decks) => {
933
+ localStorage.setItem('ankigen_decks', JSON.stringify(decks));
934
+ };
935
 
936
+ // Add methods to window for Gradio to access
937
+ window.loadStoredDecks = loadDecks;
938
+ window.saveStoredDecks = saveDecks;
939
+
940
+ // Initial load
941
+ return loadDecks();
942
+ }
943
+ """
944
 
945
+ # Create a custom theme
946
+ custom_theme = gr.themes.Soft().set(
947
+ body_background_fill="*background_fill_secondary",
948
+ block_background_fill="*background_fill_primary",
949
+ block_border_width="0",
950
+ button_primary_background_fill="*primary_500",
951
+ button_primary_text_color="white",
952
+ )
953
+
954
+ def analyze_learning_path(api_key, description, model):
955
+ """Analyze a job description or learning goal to create a structured learning path"""
956
+
957
+ try:
958
+ client = OpenAI(api_key=api_key)
959
+ except Exception as e:
960
+ logger.error(f"Failed to initialize OpenAI client: {str(e)}")
961
+ raise gr.Error(f"Failed to initialize OpenAI client: {str(e)}")
962
+
963
+ system_prompt = """You are an expert curriculum designer and educational consultant.
964
+ Your task is to analyze learning goals and create structured, achievable learning paths.
965
+ Break down complex topics into manageable subjects, identify prerequisites,
966
+ and suggest practical projects that reinforce learning.
967
+ Focus on creating a logical progression that builds upon previous knowledge."""
968
+
969
+ path_prompt = f"""
970
+ Analyze this description and create a structured learning path.
971
+ Return your analysis as a JSON object with the following structure:
972
+ {{
973
+ "subjects": [
974
+ {{
975
+ "Subject": "name of the subject",
976
+ "Prerequisites": "required prior knowledge",
977
+ "Time Estimate": "estimated time to learn"
978
+ }}
979
+ ],
980
+ "learning_order": "recommended sequence of study",
981
+ "projects": "suggested practical projects"
982
+ }}
983
+
984
+ Description to analyze:
985
+ {description}
986
+ """
987
+
988
+ try:
989
+ response = structured_output_completion(
990
+ client,
991
+ model,
992
+ {"type": "json_object"},
993
+ system_prompt,
994
+ path_prompt
995
+ )
996
+
997
+ # Format the response for the UI
998
+ subjects_df = pd.DataFrame(response["subjects"])
999
+ learning_order_text = f"### Recommended Learning Order\n{response['learning_order']}"
1000
+ projects_text = f"### Suggested Projects\n{response['projects']}"
1001
+
1002
+ return subjects_df, learning_order_text, projects_text
1003
+
1004
+ except Exception as e:
1005
+ logger.error(f"Failed to analyze learning path: {str(e)}")
1006
+ raise gr.Error(f"Failed to analyze learning path: {str(e)}")
1007
 
1008
  with gr.Blocks(
1009
+ theme=custom_theme,
1010
+ title="AnkiGen",
1011
+ css="""
1012
+ #footer {display:none !important}
1013
+ .tall-dataframe {height: 800px !important}
1014
+ .contain {max-width: 1200px; margin: auto;}
1015
+ .output-cards {border-radius: 8px; box-shadow: 0 4px 6px -1px rgba(0,0,0,0.1);}
1016
+ .hint-text {font-size: 0.9em; color: #666; margin-top: 4px;}
1017
+ """,
1018
+ js=js_storage, # Add the JavaScript
1019
  ) as ankigen:
1020
+ with gr.Column(elem_classes="contain"):
1021
+ gr.Markdown("# 📚 AnkiGen - Advanced Anki Card Generator")
1022
+ gr.Markdown("""
1023
+ #### Generate comprehensive Anki flashcards using AI.
1024
+ """)
1025
 
1026
+ with gr.Row():
1027
+ with gr.Column(scale=1):
1028
+ gr.Markdown("### Configuration")
1029
+
1030
+ # Add mode selection
1031
+ generation_mode = gr.Radio(
1032
+ choices=[
1033
+ "subject",
1034
+ "path"
1035
+ ],
1036
+ value="subject",
1037
+ label="Generation Mode",
1038
+ info="Choose how you want to generate content"
1039
+ )
1040
+
1041
+ # Create containers for different modes
1042
+ with gr.Group() as subject_mode:
1043
+ subject = gr.Textbox(
1044
+ label="Subject",
1045
+ placeholder="Enter the subject, e.g., 'Basic SQL Concepts'",
1046
+ info="The topic you want to generate flashcards for"
1047
+ )
1048
+
1049
+ with gr.Group(visible=False) as path_mode:
1050
+ description = gr.Textbox(
1051
+ label="Learning Goal",
1052
+ placeholder="Paste a job description or describe what you want to learn...",
1053
+ info="We'll break this down into learnable subjects",
1054
+ lines=5
1055
+ )
1056
+ analyze_button = gr.Button("Analyze & Break Down", variant="secondary")
1057
+
1058
+ # Common settings
1059
+ api_key_input = gr.Textbox(
1060
+ label="OpenAI API Key",
1061
+ type="password",
1062
+ placeholder="Enter your OpenAI API key",
1063
+ value=os.getenv("OPENAI_API_KEY", ""),
1064
+ info="Your OpenAI API key starting with 'sk-'"
1065
+ )
1066
+
1067
+ # Generation Button
1068
+ generate_button = gr.Button("Generate Cards", variant="primary")
1069
 
1070
+ # Advanced Settings in Accordion
1071
+ with gr.Accordion("Advanced Settings", open=False):
1072
+ model_choice = gr.Dropdown(
1073
+ choices=[
1074
+ "gpt-4o-mini",
1075
+ "gpt-4o",
1076
+ "o1"
1077
+ ],
1078
+ value="gpt-4o-mini",
1079
+ label="Model Selection",
1080
+ info="Select the AI model to use for generation"
1081
+ )
1082
+
1083
+ # Add tooltip/description for models
1084
+ model_info = gr.Markdown("""
1085
+ **Model Information:**
1086
+ - **gpt-4o-mini**: Fastest option, good for most use cases
1087
+ - **gpt-4o**: Better quality, takes longer to generate
1088
+ - **o1**: Highest quality, longest generation time
1089
+ """)
1090
+
1091
+ topic_number = gr.Slider(
1092
+ label="Number of Topics",
1093
+ minimum=2,
1094
+ maximum=20,
1095
+ step=1,
1096
+ value=2,
1097
+ info="How many distinct topics to cover within the subject",
1098
+ )
1099
+ cards_per_topic = gr.Slider(
1100
+ label="Cards per Topic",
1101
+ minimum=2,
1102
+ maximum=30,
1103
+ step=1,
1104
+ value=3,
1105
+ info="How many flashcards to generate for each topic",
1106
+ )
1107
+ preference_prompt = gr.Textbox(
1108
+ label="Learning Preferences",
1109
+ placeholder="e.g., 'Assume I'm a beginner' or 'Focus on practical examples'",
1110
+ info="Customize how the content is presented",
1111
+ lines=3,
1112
+ )
1113
+
1114
+ # Right column - add a new container for learning path results
1115
+ with gr.Column(scale=2):
1116
+ with gr.Group(visible=False) as path_results:
1117
+ gr.Markdown("### Learning Path Analysis")
1118
+ subjects_list = gr.Dataframe(
1119
+ headers=["Subject", "Prerequisites", "Time Estimate"],
1120
+ label="Recommended Subjects",
1121
+ interactive=False
1122
+ )
1123
+ learning_order = gr.Markdown("### Recommended Learning Order")
1124
+ projects = gr.Markdown("### Suggested Projects")
1125
+
1126
+ # Replace generate_selected with use_subjects
1127
+ use_subjects = gr.Button(
1128
+ "Use These Subjects ℹ️", # Added info emoji to button text
1129
+ variant="primary"
1130
+ )
1131
+ gr.Markdown(
1132
+ "*Click to copy subjects to main input for card generation*",
1133
+ elem_classes="hint-text"
1134
+ )
1135
+
1136
+ # Existing output components
1137
+ with gr.Group() as cards_output:
1138
+ gr.Markdown("### Generated Cards")
1139
+
1140
+ # Output Format Documentation
1141
+ with gr.Accordion("Output Format", open=True):
1142
+ gr.Markdown("""
1143
+ The generated cards include:
1144
+
1145
+ * **Index**: Unique identifier for each card
1146
+ * **Topic**: The specific subtopic within your subject
1147
+ * **Question**: Clear, focused question for the flashcard front
1148
+ * **Answer**: Concise core answer
1149
+ * **Explanation**: Detailed conceptual explanation
1150
+ * **Example**: Practical implementation or code example
1151
+ * **Prerequisites**: Required knowledge for this concept
1152
+ * **Learning Outcomes**: What you should understand after mastering this card
1153
+ * **Common Misconceptions**: Incorrect assumptions debunked with explanations
1154
+ * **Difficulty**: Concept complexity level for optimal study sequencing
1155
+
1156
+ Export options:
1157
+ - **CSV**: Raw data for custom processing
1158
+ - **Anki Deck**: Ready-to-use deck with formatted cards and metadata
1159
+ """)
1160
+
1161
+ # Add near the output format documentation
1162
+ with gr.Accordion("Example Card Format", open=False):
1163
+ gr.Code(
1164
+ label="Example Card",
1165
+ value='''
1166
+ {
1167
+ "front": {
1168
+ "question": "What is a PRIMARY KEY constraint in SQL?"
1169
+ },
1170
+ "back": {
1171
+ "answer": "A PRIMARY KEY constraint uniquely identifies each record in a table",
1172
+ "explanation": "A primary key serves as a unique identifier for each row in a database table. It enforces data integrity by ensuring that:\n1. Each value is unique\n2. No null values are allowed\n3. The value remains stable over time\n\nThis is fundamental for:\n- Establishing relationships between tables\n- Maintaining data consistency\n- Efficient data retrieval",
1173
+ "example": "-- Creating a table with a primary key\nCREATE TABLE Users (\n user_id INT PRIMARY KEY,\n username VARCHAR(50) NOT NULL,\n email VARCHAR(100) UNIQUE\n);"
1174
+ },
1175
+ "metadata": {
1176
+ "prerequisites": ["Basic SQL table concepts", "Understanding of data types"],
1177
+ "learning_outcomes": ["Understand the purpose and importance of primary keys", "Know how to create and use primary keys"],
1178
+ "common_misconceptions": [
1179
+ "❌ Misconception: Primary keys must always be single columns\n✓ Reality: Primary keys can be composite (multiple columns)",
1180
+ "❌ Misconception: Primary keys must be integers\n✓ Reality: Any data type that ensures uniqueness can be used"
1181
  ],
1182
+ "difficulty": "beginner"
1183
+ }
1184
+ }
1185
+ ''',
1186
+ language="json"
1187
+ )
1188
+
1189
+ # Dataframe Output
1190
+ output = gr.Dataframe(
1191
+ headers=[
1192
+ "Index",
1193
+ "Topic",
1194
+ "Question",
1195
+ "Answer",
1196
+ "Explanation",
1197
+ "Example",
1198
+ "Prerequisites",
1199
+ "Learning_Outcomes",
1200
+ "Common_Misconceptions",
1201
+ "Difficulty"
1202
+ ],
1203
+ interactive=True,
1204
+ elem_classes="tall-dataframe",
1205
+ wrap=True,
1206
+ column_widths=[50, 100, 200, 200, 250, 200, 150, 150, 150, 100],
1207
+ )
1208
+
1209
+ # Export Controls
1210
+ with gr.Row():
1211
+ with gr.Column():
1212
+ gr.Markdown("### Export Options")
1213
+ with gr.Row():
1214
+ export_csv_button = gr.Button("Export to CSV", variant="secondary")
1215
+ export_anki_button = gr.Button("Export to Anki Deck", variant="secondary")
1216
+ download_csv = gr.File(label="Download CSV", interactive=False, visible=False)
1217
+ download_anki = gr.File(label="Download Anki Deck", interactive=False, visible=False)
1218
+
1219
+ # Add near the top of the Blocks
1220
+ with gr.Row():
1221
+ progress = gr.HTML(visible=False)
1222
+ total_cards = gr.Number(label="Total Cards Generated", value=0, visible=False)
1223
+
1224
+ # Add JavaScript to handle mode switching
1225
+ def update_mode_visibility(mode):
1226
+ """Update component visibility based on selected mode and clear values"""
1227
+ is_subject = (mode == "subject")
1228
+ is_path = (mode == "path")
1229
+
1230
+ # Clear values when switching modes
1231
+ if is_path:
1232
+ subject.value = "" # Clear subject when switching to path mode
1233
+ else:
1234
+ description.value = "" # Clear description when switching to subject mode
1235
+
1236
+ return {
1237
+ subject_mode: gr.update(visible=is_subject),
1238
+ path_mode: gr.update(visible=is_path),
1239
+ path_results: gr.update(visible=is_path),
1240
+ cards_output: gr.update(visible=not is_path),
1241
+ subject: gr.update(value="") if is_path else gr.update(),
1242
+ description: gr.update(value="") if not is_path else gr.update(),
1243
+ output: gr.update(value=None), # Clear previous output
1244
+ progress: gr.update(value="", visible=False),
1245
+ total_cards: gr.update(value=0, visible=False)
1246
+ }
1247
+
1248
+ # Update the mode switching handler to include all components that need clearing
1249
+ generation_mode.change(
1250
+ fn=update_mode_visibility,
1251
+ inputs=[generation_mode],
1252
+ outputs=[
1253
+ subject_mode,
1254
+ path_mode,
1255
+ path_results,
1256
+ cards_output,
1257
+ subject,
1258
+ description,
1259
+ output,
1260
+ progress,
1261
+ total_cards
1262
+ ]
1263
+ )
1264
+
1265
+ # Add handler for path analysis
1266
+ analyze_button.click(
1267
+ fn=analyze_learning_path,
1268
+ inputs=[api_key_input, description, model_choice],
1269
+ outputs=[subjects_list, learning_order, projects]
1270
+ )
1271
+
1272
+ # Add this function to handle copying subjects to main input
1273
+ def use_selected_subjects(subjects_df, topic_number):
1274
+ """Copy selected subjects to main input and switch to subject mode"""
1275
+ if subjects_df is None or subjects_df.empty:
1276
+ raise gr.Error("No subjects available to copy")
1277
+
1278
+ # Get all subjects and join them
1279
+ subjects = subjects_df["Subject"].tolist()
1280
+ combined_subject = ", ".join(subjects)
1281
+
1282
+ # Calculate reasonable number of topics based on number of subjects
1283
+ suggested_topics = min(len(subjects) + 2, 20) # Add 2 for related concepts, cap at 20
1284
+
1285
+ # Return updates for individual components instead of groups
1286
+ return (
1287
+ "subject", # generation_mode value
1288
+ gr.update(visible=True), # subject textbox visibility
1289
+ gr.update(visible=False), # description textbox visibility
1290
+ gr.update(visible=False), # subjects_list visibility
1291
+ gr.update(visible=False), # learning_order visibility
1292
+ gr.update(visible=False), # projects visibility
1293
+ gr.update(visible=True), # output visibility
1294
+ combined_subject, # subject value
1295
+ suggested_topics, # topic_number value
1296
+ "Focus on connections between these subjects and their practical applications" # preference_prompt
1297
+ )
1298
+
1299
+ # Update the click handler to match the new outputs
1300
+ use_subjects.click(
1301
+ fn=use_selected_subjects,
1302
+ inputs=[subjects_list, topic_number],
1303
+ outputs=[
1304
+ generation_mode,
1305
+ subject, # Individual components instead of groups
1306
+ description,
1307
+ subjects_list,
1308
+ learning_order,
1309
+ projects,
1310
+ output,
1311
+ subject,
1312
+ topic_number,
1313
+ preference_prompt
1314
+ ]
1315
+ )
1316
 
1317
+ # Simplified event handlers
1318
+ generate_button.click(
1319
+ fn=generate_cards,
1320
+ inputs=[
1321
+ api_key_input,
1322
+ subject,
1323
+ model_choice, # Add model selection
1324
+ topic_number,
1325
+ cards_per_topic,
1326
+ preference_prompt,
1327
+ ],
1328
+ outputs=[output, progress, total_cards],
1329
+ show_progress=True,
1330
+ )
1331
+
1332
+ export_csv_button.click(
1333
+ fn=export_csv,
1334
+ inputs=[output],
1335
+ outputs=download_csv,
1336
+ show_progress="full",
1337
+ )
1338
+
1339
+ export_anki_button.click(
1340
+ fn=export_deck,
1341
+ inputs=[output, subject],
1342
+ outputs=download_anki,
1343
+ show_progress="full",
1344
+ )
1345
 
1346
  if __name__ == "__main__":
1347
+ logger.info("Starting AnkiGen application")
1348
  ankigen.launch(share=False, favicon_path="./favicon.ico")
requirements.txt CHANGED
@@ -1,2 +1,5 @@
1
  gradio
2
- openai
 
 
 
 
1
  gradio
2
+ openai
3
+ tenacity>=8.2.3
4
+ genanki>=0.13.0
5
+ pandas>=2.0.0