Medicalchatbot / app.py
brkznb's picture
Update app.py
6646800 verified
raw
history blame
6.42 kB
import torch
from trl import SFTTrainer
from peft import LoraConfig
from datasets import load_dataset
from transformers import (AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TrainingArguments, pipeline)
import ipywidgets as widgets
from IPython.display import display
import gradio as gr
llama_model = AutoModelForCausalLM.from_pretrained(pretrained_model_name_or_path = "aboonaji/llama2finetune-v2",
quantization_config = BitsAndBytesConfig(load_in_4bit = True, bnb_4bit_compute_dtype = getattr(torch, "float16"), bnb_4bit_quant_type = "nf4"))
llama_model.config.use_cache = False
llama_model.config.pretraining_tp = 1
llama_tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "aboonaji/llama2finetune-v2", trust_remote_code = True)
llama_tokenizer.pad_token = llama_tokenizer.eos_token
llama_tokenizer.padding_side = "right"
training_arguments = TrainingArguments(output_dir = "./results", per_device_train_batch_size = 1, max_steps = 100)
llama_sft_trainer = SFTTrainer(model = llama_model,
args = training_arguments,
train_dataset = load_dataset(path = "aboonaji/wiki_medical_terms_llam2_format", split = "train"),
tokenizer = llama_tokenizer,
peft_config = LoraConfig(task_type = "CAUSAL_LM", r = 16, lora_alpha = 16, lora_dropout = 0.1),
dataset_text_field = "text")
llama_sft_trainer.train()
generator = pipeline("text-generation", model=llama_model, tokenizer=llama_tokenizer, max_length=500)
# In-memory user database
user_db = {}
# Response function
def generate_response(prompt):
response = generator(f"<s>[INST] {prompt} [/INST]")[0]["generated_text"]
return response
# Sign-up and login logic
def signup_user(new_username, new_password):
if not new_username or not new_password:
return "❌ No input. Please provide both username and password."
if new_username in user_db:
return "❌ Username already exists."
user_db[new_username] = new_password
return "βœ… Account created! Please log in."
def login_user(username, password):
if username in user_db and user_db[username] == password:
return (
gr.update(visible=True), # Show chat UI
gr.update(visible=False), # Hide login UI
"", # Clear login message
gr.update(selected=3) # Switch to Chat tab
)
return (
gr.update(visible=False),
gr.update(visible=True),
"❌ Invalid credentials",
gr.update(selected=2)
)
def logout_user():
return (
gr.update(visible=False), # Hide chat UI
gr.update(visible=True), # Show login UI
gr.update(selected=0) # Switch to Landing tab
)
with gr.Blocks(theme="soft", css="""
#create-btn button,
#login-btn button,
#submit-btn button,
#logout-btn button {
font-size: 12px !important;
padding: 4px 8px !important;
height: 30px !important;
width: auto !important;
min-width: 80px !important;
}
""") as demo:
with gr.Tabs(selected=0, elem_id="tabs") as tabs:
with gr.Tab("Home"):
with gr.Column(elem_id="landing-container") as landing_ui:
gr.Markdown("# 🏠 Welcome to MEDChat AI")
gr.Markdown("---")
gr.Markdown("#### πŸ”§ Features:")
gr.Markdown("- Medical Q&A support\n- Easy-to-use chatbot interface\n- Privacy-focused with local data")
gr.Markdown("---")
gr.Markdown("Β© 2025 MEDChat AI | Finetuned by LLaMA 2 | Created for educational purposes")
with gr.Tab("Sign Up"):
with gr.Column() as signup_ui:
gr.Markdown("### πŸ“ Sign Up")
new_username = gr.Textbox(label="New Username")
new_password = gr.Textbox(label="New Password", type="password")
create_account_btn = gr.Button("Create Account", elem_id="create-btn")
signup_msg = gr.Markdown()
with gr.Tab("Login"):
with gr.Column(visible=True) as login_ui:
gr.Markdown("### πŸ” Login")
username = gr.Textbox(label="Username")
password = gr.Textbox(label="Password", type="password")
login_btn = gr.Button("Login", elem_id="login-btn")
login_msg = gr.Markdown()
with gr.Tab("Chat"):
with gr.Column(visible=False) as chat_ui:
gr.Markdown("## πŸ’¬ MEDChat AI")
gr.Markdown("What can I help with today?")
logout_btn = gr.Button("πŸšͺ Logout", elem_id="logout-btn")
prompt = gr.Textbox(lines=5, placeholder="Enter your prompt...")
submit_btn = gr.Button("Submit", elem_id="submit-btn")
response = gr.Textbox(label="Response")
gr.Markdown("### Try one of these:")
examples = gr.Examples(
examples=[
["What does the immune system do?"],
["What is Epistaxis?"],
["Do our intestines contain germs?"],
["What are allergies?"],
["Should I start taking creatine?"],
["What are antibiotics?"],
["Why do I get sick?"],
["What's the difference between bacteria and viruses?"],
["Where are some places that germs hide?"],
],
inputs=prompt
)
logout_btn.click(fn=logout_user, outputs=[chat_ui, login_ui, tabs])
# Tab navigation logic
to_signup = gr.Button(visible=False)
to_login = gr.Button(visible=False)
to_signup.click(lambda: gr.update(selected=1), outputs=tabs)
to_login.click(lambda: gr.update(selected=2), outputs=tabs)
create_account_btn.click(fn=signup_user, inputs=[new_username, new_password], outputs=signup_msg)
login_btn.click(
fn=login_user,
inputs=[username, password],
outputs=[chat_ui, login_ui, login_msg, tabs]
)
submit_btn.click(fn=generate_response, inputs=prompt, outputs=response)
# Launch the interface
demo.launch(share=True)