Spaces:
Running
on
Zero
Running
on
Zero
| prod = False | |
| port = 8080 | |
| show_options = False | |
| if prod: | |
| port = 8081 | |
| # show_options = False | |
| import os | |
| import gc | |
| import random | |
| import time | |
| import gradio as gr | |
| import numpy as np | |
| # import imageio | |
| import torch | |
| from PIL import Image | |
| from diffusers import ( | |
| ControlNetModel, | |
| DPMSolverMultistepScheduler, | |
| StableDiffusionControlNetPipeline, | |
| AutoencoderKL, | |
| ) | |
| from diffusers.models.attention_processor import AttnProcessor2_0 | |
| from preprocess import Preprocessor | |
| MAX_SEED = np.iinfo(np.int32).max | |
| API_KEY = os.environ.get("API_KEY", None) | |
| print("CUDA version:", torch.version.cuda) | |
| print("loading pipe") | |
| compiled = False | |
| # api = HfApi() | |
| import spaces | |
| preprocessor = Preprocessor() | |
| preprocessor.load("NormalBae") | |
| if gr.NO_RELOAD: | |
| torch.cuda.max_memory_allocated(device="cuda") | |
| # Controlnet Normal | |
| model_id = "lllyasviel/control_v11p_sd15_normalbae" | |
| print("initializing controlnet") | |
| controlnet = ControlNetModel.from_pretrained( | |
| model_id, | |
| torch_dtype=torch.float16, | |
| attn_implementation="flash_attention_2", | |
| ).to("cuda") | |
| # Scheduler | |
| scheduler = DPMSolverMultistepScheduler.from_pretrained( | |
| "runwayml/stable-diffusion-v1-5", | |
| solver_order=2, | |
| subfolder="scheduler", | |
| use_karras_sigmas=True, | |
| final_sigmas_type="sigma_min", | |
| algorithm_type="sde-dpmsolver++", | |
| prediction_type="epsilon", | |
| thresholding=False, | |
| denoise_final=True, | |
| device_map="cuda", | |
| torch_dtype=torch.float16, | |
| ) | |
| # Stable Diffusion Pipeline URL | |
| # base_model_url = "https://huggingface.co/broyang/hentaidigitalart_v20/blob/main/realcartoon3d_v15.safetensors" | |
| base_model_url = "https://huggingface.co/Lykon/AbsoluteReality/blob/main/AbsoluteReality_1.8.1_pruned.safetensors" | |
| vae_url = "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/vae-ft-mse-840000-ema-pruned.safetensors" | |
| vae = AutoencoderKL.from_single_file(vae_url, torch_dtype=torch.float16).to("cuda") | |
| vae.to(memory_format=torch.channels_last) | |
| pipe = StableDiffusionControlNetPipeline.from_single_file( | |
| base_model_url, | |
| # safety_checker=None, | |
| # load_safety_checker=True, | |
| controlnet=controlnet, | |
| scheduler=scheduler, | |
| vae=vae, | |
| torch_dtype=torch.float16, | |
| ) | |
| pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="EasyNegativeV2.safetensors", token="EasyNegativeV2",) | |
| pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="badhandv4.pt", token="badhandv4") | |
| pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="fcNeg-neg.pt", token="fcNeg-neg") | |
| pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_Ahegao.pt", token="HDA_Ahegao") | |
| pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_Bondage.pt", token="HDA_Bondage") | |
| pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_pet_play.pt", token="HDA_pet_play") | |
| pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_unconventional maid.pt", token="HDA_unconventional_maid") | |
| pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_NakedHoodie.pt", token="HDA_NakedHoodie") | |
| pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_NunDress.pt", token="HDA_NunDress") | |
| pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_Shibari.pt", token="HDA_Shibari") | |
| pipe.to("cuda") | |
| # experimental speedup? | |
| # pipe.compile() | |
| # torch.cuda.empty_cache() | |
| # gc.collect() | |
| print("---------------Loaded controlnet pipeline---------------") | |
| def init(pipe): | |
| pipe.enable_xformers_memory_efficient_attention() | |
| pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) | |
| pipe.unet.set_attn_processor(AttnProcessor2_0()) | |
| print("Model Compiled!") | |
| init(pipe) | |
| def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| return seed | |
| def get_additional_prompt(): | |
| prompt = "hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed" | |
| top = ["tank top", "blouse", "button up shirt", "sweater", "corset top"] | |
| bottom = ["short skirt", "athletic shorts", "jean shorts", "pleated skirt", "short skirt", "leggings", "high-waisted shorts"] | |
| accessory = ["knee-high boots", "gloves", "Thigh-high stockings", "Garter belt", "choker", "necklace", "headband", "headphones"] | |
| return f"{prompt}, {random.choice(top)}, {random.choice(bottom)}, {random.choice(accessory)}, score_9" | |
| # outfit = ["schoolgirl outfit", "playboy outfit", "red dress", "gala dress", "cheerleader outfit", "nurse outfit", "Kimono"] | |
| def get_prompt(prompt, additional_prompt): | |
| interior = "design-style interior designed (interior space), captured with a DSLR camera using f/10 aperture, 1/60 sec shutter speed, ISO 400, 20mm focal length, tungsten white balance, (sharp focus), professional photography, high-resolution, 8k, Pulitzer Prize-winning" | |
| default = "hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed" | |
| default2 = f"professional 3d model {prompt},octane render,highly detailed,volumetric,dramatic lighting,hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed" | |
| randomize = get_additional_prompt() | |
| # nude = "NSFW,((nude)),medium bare breasts,hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed" | |
| # bodypaint = "((fully naked with no clothes)),nude naked seethroughxray,invisiblebodypaint,rating_newd,NSFW" | |
| lab_girl = "hyperrealistic photography, extremely detailed, shy assistant wearing minidress boots and gloves, laboratory background, score_9, 1girl" | |
| pet_play = "hyperrealistic photography, extremely detailed, playful, blush, glasses, collar, score_9, HDA_pet_play" | |
| bondage = "hyperrealistic photography, extremely detailed, submissive, glasses, score_9, HDA_Bondage" | |
| # ahegao = "((invisible clothing)), hyperrealistic photography,exposed vagina,sexy,nsfw,HDA_Ahegao" | |
| ahegao2 = "(invisiblebodypaint),rating_newd,HDA_Ahegao" | |
| athleisure = "hyperrealistic photography, extremely detailed, 1girl athlete, exhausted embarrassed sweaty,outdoors, ((athleisure clothing)), score_9" | |
| atompunk = "((atompunk world)), hyperrealistic photography, extremely detailed, short hair, bodysuit, glasses, neon cyberpunk background, score_9" | |
| maid = "hyperrealistic photography, extremely detailed, shy, blushing, score_9, pastel background, HDA_unconventional_maid" | |
| nundress = "hyperrealistic photography, extremely detailed, shy, blushing, fantasy background, score_9, HDA_NunDress" | |
| naked_hoodie = "hyperrealistic photography, extremely detailed, medium hair, cityscape, (neon lights), score_9, HDA_NakedHoodie" | |
| abg = "(1girl, asian body covered in words, words on body, tattoos of (words) on body),(masterpiece, best quality),medium breasts,(intricate details),unity 8k wallpaper,ultra detailed,(pastel colors),beautiful and aesthetic,see-through (clothes),detailed,solo" | |
| # shibari = "extremely detailed, hyperrealistic photography, earrings, blushing, lace choker, tattoo, medium hair, score_9, HDA_Shibari" | |
| shibari2 = "octane render, highly detailed, volumetric, HDA_Shibari" | |
| if prompt == "": | |
| girls = [randomize, pet_play, bondage, lab_girl, athleisure, atompunk, maid, nundress, naked_hoodie, abg, shibari2, ahegao2] | |
| prompts_nsfw = [abg, shibari2, ahegao2] | |
| prompt = f"{random.choice(girls)}" | |
| prompt = f"boho chic" | |
| # print(f"-------------{preset}-------------") | |
| else: | |
| prompt = f"Photo from Pinterest of {prompt} {interior}" | |
| # prompt = default2 | |
| return f"{prompt} f{additional_prompt}" | |
| style_list = [ | |
| { | |
| "name": "None", | |
| "prompt": "" | |
| }, | |
| { | |
| "name": "Minimalistic", | |
| "prompt": "Minimalist interior design, clean lines, neutral colors, uncluttered space, functional furniture, lots of natural light" | |
| }, | |
| { | |
| "name": "Boho Chic", | |
| "prompt": "Bohemian chic interior, eclectic mix of patterns and textures, vintage furniture, plants, woven textiles, warm earthy colors" | |
| }, | |
| { | |
| "name": "Saudi Prince Gold", | |
| "prompt": "Opulent gold interior, luxurious ornate furniture, crystal chandeliers, rich fabrics, marble floors, intricate Arabic patterns" | |
| }, | |
| { | |
| "name": "Modern Farmhouse", | |
| "prompt": "Modern farmhouse interior, rustic wood elements, shiplap walls, neutral color palette, industrial accents, cozy textiles" | |
| }, | |
| { | |
| "name": "Neoclassical", | |
| "prompt": "Neoclassical interior design, elegant columns, ornate moldings, symmetrical layout, refined furniture, muted color palette" | |
| }, | |
| { | |
| "name": "Eclectic", | |
| "prompt": "Eclectic interior design, mix of styles and eras, bold color combinations, diverse furniture pieces, unique art objects" | |
| }, | |
| { | |
| "name": "Parisian White", | |
| "prompt": "Parisian apartment interior, all-white color scheme, ornate moldings, herringbone wood floors, elegant furniture, large windows" | |
| }, | |
| { | |
| "name": "Hollywood Glam", | |
| "prompt": "Hollywood Regency interior, glamorous and luxurious, bold colors, mirrored surfaces, velvet upholstery, gold accents" | |
| }, | |
| { | |
| "name": "Scandinavian", | |
| "prompt": "Scandinavian interior design, light wood tones, white walls, minimalist furniture, cozy textiles, hygge atmosphere" | |
| }, | |
| { | |
| "name": "Japanese", | |
| "prompt": "Traditional Japanese interior, tatami mats, shoji screens, low furniture, zen garden view, minimalist decor, natural materials" | |
| }, | |
| { | |
| "name": "Texas Cowboy", | |
| "prompt": "Western cowboy interior, rustic wood beams, leather furniture, cowhide rugs, antler chandeliers, southwestern patterns" | |
| }, | |
| { | |
| "name": "Midcentury Modern", | |
| "prompt": "Mid-century modern interior, 1950s-60s style furniture, organic shapes, warm wood tones, bold accent colors, large windows" | |
| }, | |
| { | |
| "name": "Beach", | |
| "prompt": "Coastal beach house interior, light blue and white color scheme, weathered wood, nautical accents, sheer curtains, ocean view" | |
| }, | |
| { | |
| "name": "Retro Futurism", | |
| "prompt": "Neon (atompunk world) retro cyberpunk background", | |
| }, | |
| { | |
| "name": "The Matrix", | |
| "prompt": "Futuristic cyberpunk interior, neon accent lighting, holographic plants, sleek black surfaces, advanced gaming setup, transparent screens, Blade Runner inspired decor, high-tech minimalist furniture, subtle Matrix green code effects, ceiling-to-floor digital displays, automated smart home features, hidden LED strips, metallic and glass materials, floating furniture pieces, ambient blue lighting" | |
| }, | |
| ] | |
| styles = {k["name"]: (k["prompt"]) for k in style_list} | |
| STYLE_NAMES = list(styles.keys()) | |
| def apply_style(style_name): | |
| if style_name in styles: | |
| p = styles.get(style_name, "boho chic") | |
| return p | |
| css = """ | |
| h1 { | |
| text-align: center; | |
| display:block; | |
| } | |
| h2 { | |
| text-align: center; | |
| display:block; | |
| } | |
| h3 { | |
| text-align: center; | |
| display:block; | |
| } | |
| .gradio-container{max-width: 1200px !important} | |
| footer {visibility: hidden} | |
| """ | |
| with gr.Blocks(theme="bethecloud/storj_theme", css=css) as demo: | |
| ############################################################################# | |
| with gr.Row(): | |
| with gr.Accordion("Advanced options", open=show_options, visible=show_options): | |
| num_images = gr.Slider( | |
| label="Images", minimum=1, maximum=4, value=1, step=1 | |
| ) | |
| image_resolution = gr.Slider( | |
| label="Image resolution", | |
| minimum=256, | |
| maximum=1024, | |
| value=512, | |
| step=256, | |
| ) | |
| preprocess_resolution = gr.Slider( | |
| label="Preprocess resolution", | |
| minimum=128, | |
| maximum=1024, | |
| value=512, | |
| step=1, | |
| ) | |
| num_steps = gr.Slider( | |
| label="Number of steps", minimum=1, maximum=100, value=15, step=1 | |
| ) # 20/4.5 or 12 without lora, 4 with lora | |
| guidance_scale = gr.Slider( | |
| label="Guidance scale", minimum=0.1, maximum=30.0, value=5.5, step=0.1 | |
| ) # 5 without lora, 2 with lora | |
| seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| a_prompt = gr.Textbox( | |
| label="Additional prompt", | |
| value = "design-style interior designed (interior space), captured with a DSLR camera using f/10 aperture, 1/60 sec shutter speed, ISO 400, 20mm focal length, tungsten white balance, (sharp focus), professional photography, high-resolution, 8k, Pulitzer Prize-winning" | |
| ) | |
| n_prompt = gr.Textbox( | |
| label="Negative prompt", | |
| value="EasyNegativeV2, fcNeg, (badhandv4:1.4), (worst quality, low quality, bad quality, normal quality:2.0), (bad hands, missing fingers, extra fingers:2.0)", | |
| ) | |
| ############################################################################# | |
| # input text | |
| # with gr.Row(): | |
| # gr.Text(label="Interior Design Style Examples", value="Eclectic, Maximalist, Bohemian, Scandinavian, Minimalist, Rustic, Modern Farmhouse, Contemporary, Luxury, Airbnb, Boho Chic, Midcentury Modern, Art Deco, Zen, Beach, Neoclassical, Industrial, Biophilic, Eco-friendly, Hollywood Glam, Parisian White, Saudi Prince Gold, French Country, Monster Energy Drink, Cyberpunk, Vaporwave, Baroque, etc.\n\nPro tip: add a color to customize it! You can also describe the furniture type.") | |
| with gr.Column(): | |
| prompt = gr.Textbox( | |
| label="Custom Prompt", | |
| placeholder="boho chic", | |
| ) | |
| with gr.Row(visible=True): | |
| style_selection = gr.Radio( | |
| show_label=True, | |
| container=True, | |
| interactive=True, | |
| choices=STYLE_NAMES, | |
| value="None", | |
| label="Design Styles", | |
| ) | |
| # input image | |
| with gr.Row(equal_height=True): | |
| with gr.Column(scale=1, min_width=300): | |
| image = gr.Image( | |
| label="Input", | |
| sources=["upload"], | |
| show_label=True, | |
| mirror_webcam=True, | |
| format="webp", | |
| ) | |
| # run button | |
| with gr.Column(): | |
| run_button = gr.Button(value="Use this one", size="lg", visible=False) | |
| # output image | |
| with gr.Column(scale=1, min_width=300): | |
| result = gr.Image( | |
| label="Output", | |
| interactive=False, | |
| format="webp", | |
| show_share_button= False, | |
| ) | |
| # Use this image button | |
| with gr.Column(): | |
| use_ai_button = gr.Button(value="Use this one", size="lg", visible=False) | |
| config = [ | |
| image, | |
| style_selection, | |
| prompt, | |
| a_prompt, | |
| n_prompt, | |
| num_images, | |
| image_resolution, | |
| preprocess_resolution, | |
| num_steps, | |
| guidance_scale, | |
| seed, | |
| ] | |
| with gr.Row(): | |
| helper_text = gr.Markdown("## Tap and hold (on mobile) to save the image.", visible=True) | |
| # image processing | |
| def auto_process_image(image, style_selection, prompt, a_prompt, n_prompt, num_images, image_resolution, preprocess_resolution, num_steps, guidance_scale, seed, progress=gr.Progress(track_tqdm=True)): | |
| return process_image(image, style_selection, prompt, a_prompt, n_prompt, num_images, image_resolution, preprocess_resolution, num_steps, guidance_scale, seed) | |
| # AI Image Processing | |
| def submit(image, style_selection, prompt, a_prompt, n_prompt, num_images, image_resolution, preprocess_resolution, num_steps, guidance_scale, seed, progress=gr.Progress(track_tqdm=True)): | |
| return process_image(image, style_selection, prompt, a_prompt, n_prompt, num_images, image_resolution, preprocess_resolution, num_steps, guidance_scale, seed) | |
| # Change input to result | |
| def update_input(): | |
| try: | |
| print("Updating image to AI Temp Image") | |
| ai_temp_image = Image.open("temp_image.jpg") | |
| return ai_temp_image | |
| except FileNotFoundError: | |
| print("No AI Image Available") | |
| return None | |
| # Turn off buttons when processing | |
| def turn_buttons_off(): | |
| return gr.update(visible=False), gr.update(visible=False) | |
| # Turn on buttons when processing is complete | |
| def turn_buttons_on(): | |
| return gr.update(visible=True), gr.update(visible=True) | |
| def process_image( | |
| image, | |
| style_selection, | |
| prompt, | |
| a_prompt, | |
| n_prompt, | |
| num_images, | |
| image_resolution, | |
| preprocess_resolution, | |
| num_steps, | |
| guidance_scale, | |
| seed, | |
| progress=gr.Progress(track_tqdm=True) | |
| ): | |
| torch.cuda.synchronize() | |
| preprocess_start = time.time() | |
| print("processing image") | |
| preprocessor.load("NormalBae") | |
| # preprocessor.load("Canny") #20 steps, 9 guidance, 512, 512 | |
| global compiled | |
| if not compiled: | |
| print("Not Compiled") | |
| compiled = True | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.cuda.manual_seed(seed) | |
| control_image = preprocessor( | |
| image=image, | |
| image_resolution=image_resolution, | |
| detect_resolution=preprocess_resolution, | |
| ) | |
| preprocess_time = time.time() - preprocess_start | |
| if style_selection is not None or style_selection != "None": | |
| prompt = "Photo from Pinterest of " + apply_style(style_selection) + " " + prompt + " " + a_prompt | |
| else: | |
| prompt=str(get_prompt(prompt, a_prompt)) | |
| negative_prompt=str(n_prompt) | |
| print(prompt) | |
| start = time.time() | |
| results = pipe( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| guidance_scale=guidance_scale, | |
| num_images_per_prompt=num_images, | |
| num_inference_steps=num_steps, | |
| generator=generator, | |
| image=control_image, | |
| ).images[0] | |
| torch.cuda.synchronize() | |
| torch.cuda.empty_cache() | |
| print(f"\n-------------------------Preprocess done in: {preprocess_time:.2f} seconds-------------------------") | |
| print(f"\n-------------------------Inference done in: {time.time() - start:.2f} seconds-------------------------") | |
| # timestamp = int(time.time()) | |
| #if not os.path.exists("./outputs"): | |
| # os.makedirs("./outputs") | |
| # img_path = f"./{timestamp}.jpg" | |
| # results_path = f"./{timestamp}_out_{prompt}.jpg" | |
| # imageio.imsave(img_path, image) | |
| # results.save(results_path) | |
| results.save("temp_image.jpg") | |
| # api.upload_file( | |
| # path_or_fileobj=img_path, | |
| # path_in_repo=img_path, | |
| # repo_id="broyang/anime-ai-outputs", | |
| # repo_type="dataset", | |
| # token=API_KEY, | |
| # run_as_future=True, | |
| # ) | |
| # api.upload_file( | |
| # path_or_fileobj=results_path, | |
| # path_in_repo=results_path, | |
| # repo_id="broyang/anime-ai-outputs", | |
| # repo_type="dataset", | |
| # token=API_KEY, | |
| # run_as_future=True, | |
| # ) | |
| return results | |
| if prod: | |
| demo.queue(max_size=20).launch(server_name="localhost", server_port=port) | |
| else: | |
| demo.queue(api_open=False).launch(show_api=False) |