Spaces:
Running
on
Zero
Running
on
Zero
Bobby
commited on
Commit
·
62cc7ef
1
Parent(s):
f3ff2c1
nice commit rebase
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitignore +1 -0
- app.py +615 -451
- app.zip +0 -3
- app/app.py +0 -451
- app/local_app.py +0 -455
- app/local_preprocess.py +0 -69
- app/preprocess.py +0 -67
- app/requirements.txt +0 -12
- app/win.requirements.txt +0 -17
- controlnet_aux/canny/__pycache__/__init__.cpython-310.pyc +0 -0
- controlnet_aux/dwpose/__pycache__/__init__.cpython-310.pyc +0 -0
- controlnet_aux/dwpose/__pycache__/util.cpython-310.pyc +0 -0
- controlnet_aux/dwpose/__pycache__/wholebody.cpython-310.pyc +0 -0
- controlnet_aux/hed/__pycache__/__init__.cpython-310.pyc +0 -0
- controlnet_aux/leres/__pycache__/__init__.cpython-310.pyc +0 -0
- controlnet_aux/leres/leres/__pycache__/Resnet.cpython-310.pyc +0 -0
- controlnet_aux/leres/leres/__pycache__/Resnext_torch.cpython-310.pyc +0 -0
- controlnet_aux/leres/leres/__pycache__/__init__.cpython-310.pyc +0 -0
- controlnet_aux/leres/leres/__pycache__/depthmap.cpython-310.pyc +0 -0
- controlnet_aux/leres/leres/__pycache__/multi_depth_model_woauxi.cpython-310.pyc +0 -0
- controlnet_aux/leres/leres/__pycache__/net_tools.cpython-310.pyc +0 -0
- controlnet_aux/leres/leres/__pycache__/network_auxi.cpython-310.pyc +0 -0
- controlnet_aux/leres/pix2pix/__pycache__/__init__.cpython-310.pyc +0 -0
- controlnet_aux/leres/pix2pix/models/__pycache__/__init__.cpython-310.pyc +0 -0
- controlnet_aux/leres/pix2pix/models/__pycache__/base_model.cpython-310.pyc +0 -0
- controlnet_aux/leres/pix2pix/models/__pycache__/base_model_hg.cpython-310.pyc +0 -0
- controlnet_aux/leres/pix2pix/models/__pycache__/networks.cpython-310.pyc +0 -0
- controlnet_aux/leres/pix2pix/models/__pycache__/pix2pix4depth_model.cpython-310.pyc +0 -0
- controlnet_aux/leres/pix2pix/options/__pycache__/__init__.cpython-310.pyc +0 -0
- controlnet_aux/leres/pix2pix/options/__pycache__/base_options.cpython-310.pyc +0 -0
- controlnet_aux/leres/pix2pix/options/__pycache__/test_options.cpython-310.pyc +0 -0
- controlnet_aux/leres/pix2pix/util/__pycache__/__init__.cpython-310.pyc +0 -0
- controlnet_aux/leres/pix2pix/util/__pycache__/util.cpython-310.pyc +0 -0
- controlnet_aux/lineart/__pycache__/__init__.cpython-310.pyc +0 -0
- controlnet_aux/lineart_anime/__pycache__/__init__.cpython-310.pyc +0 -0
- controlnet_aux/mediapipe_face/__pycache__/__init__.cpython-310.pyc +0 -0
- controlnet_aux/mediapipe_face/__pycache__/mediapipe_face_common.cpython-310.pyc +0 -0
- controlnet_aux/midas/__pycache__/__init__.cpython-310.pyc +0 -0
- controlnet_aux/midas/__pycache__/api.cpython-310.pyc +0 -0
- controlnet_aux/midas/__pycache__/utils.cpython-310.pyc +0 -0
- controlnet_aux/midas/midas/__pycache__/__init__.cpython-310.pyc +0 -0
- controlnet_aux/midas/midas/__pycache__/base_model.cpython-310.pyc +0 -0
- controlnet_aux/midas/midas/__pycache__/blocks.cpython-310.pyc +0 -0
- controlnet_aux/midas/midas/__pycache__/dpt_depth.cpython-310.pyc +0 -0
- controlnet_aux/midas/midas/__pycache__/midas_net.cpython-310.pyc +0 -0
- controlnet_aux/midas/midas/__pycache__/midas_net_custom.cpython-310.pyc +0 -0
- controlnet_aux/midas/midas/__pycache__/transforms.cpython-310.pyc +0 -0
- controlnet_aux/midas/midas/__pycache__/vit.cpython-310.pyc +0 -0
- controlnet_aux/mlsd/__pycache__/__init__.cpython-310.pyc +0 -0
- controlnet_aux/mlsd/__pycache__/utils.cpython-310.pyc +0 -0
.gitignore
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
venv/*
|
|
|
|
| 2 |
__pycache__/*
|
| 3 |
anime_app_local.py
|
| 4 |
*__/pycache__/*
|
|
|
|
| 1 |
venv/*
|
| 2 |
+
venv2/*
|
| 3 |
__pycache__/*
|
| 4 |
anime_app_local.py
|
| 5 |
*__/pycache__/*
|
app.py
CHANGED
|
@@ -1,451 +1,615 @@
|
|
| 1 |
-
prod = False
|
| 2 |
-
port = 8080
|
| 3 |
-
show_options = False
|
| 4 |
-
if prod:
|
| 5 |
-
port = 8081
|
| 6 |
-
# show_options = False
|
| 7 |
-
|
| 8 |
-
import
|
| 9 |
-
import
|
| 10 |
-
import random
|
| 11 |
-
import time
|
| 12 |
-
|
| 13 |
-
import
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
from
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
vae.
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
pipe.load_textual_inversion(
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
pipe.load_textual_inversion(
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
#
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
"
|
| 161 |
-
"
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
"
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
"
|
| 169 |
-
"
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
"
|
| 173 |
-
"
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
{
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
#
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
)
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
#
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
|
| 451 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
prod = False
|
| 2 |
+
port = 8080
|
| 3 |
+
show_options = False
|
| 4 |
+
if prod:
|
| 5 |
+
port = 8081
|
| 6 |
+
# show_options = False
|
| 7 |
+
|
| 8 |
+
import gc
|
| 9 |
+
import os
|
| 10 |
+
import random
|
| 11 |
+
import time
|
| 12 |
+
|
| 13 |
+
import gradio as gr
|
| 14 |
+
import numpy as np
|
| 15 |
+
|
| 16 |
+
# import imageio
|
| 17 |
+
import torch
|
| 18 |
+
from diffusers import (
|
| 19 |
+
AutoencoderKL,
|
| 20 |
+
ControlNetModel,
|
| 21 |
+
DPMSolverMultistepScheduler,
|
| 22 |
+
StableDiffusionControlNetPipeline,
|
| 23 |
+
)
|
| 24 |
+
from diffusers.models.attention_processor import AttnProcessor2_0
|
| 25 |
+
from PIL import Image
|
| 26 |
+
from preprocess import Preprocessor
|
| 27 |
+
|
| 28 |
+
MAX_SEED = np.iinfo(np.int32).max
|
| 29 |
+
API_KEY = os.environ.get("API_KEY", None)
|
| 30 |
+
|
| 31 |
+
print("CUDA version:", torch.version.cuda)
|
| 32 |
+
print("loading pipe")
|
| 33 |
+
compiled = False
|
| 34 |
+
# api = HfApi()
|
| 35 |
+
|
| 36 |
+
import spaces
|
| 37 |
+
|
| 38 |
+
preprocessor = Preprocessor()
|
| 39 |
+
preprocessor.load("NormalBae")
|
| 40 |
+
|
| 41 |
+
if gr.NO_RELOAD:
|
| 42 |
+
torch.cuda.max_memory_allocated(device="cuda")
|
| 43 |
+
|
| 44 |
+
# Controlnet Normal
|
| 45 |
+
model_id = "lllyasviel/control_v11p_sd15_normalbae"
|
| 46 |
+
print("initializing controlnet")
|
| 47 |
+
controlnet = ControlNetModel.from_pretrained(
|
| 48 |
+
model_id,
|
| 49 |
+
torch_dtype=torch.float16,
|
| 50 |
+
attn_implementation="flash_attention_2",
|
| 51 |
+
).to("cuda")
|
| 52 |
+
|
| 53 |
+
# Scheduler
|
| 54 |
+
scheduler = DPMSolverMultistepScheduler.from_pretrained(
|
| 55 |
+
"runwayml/stable-diffusion-v1-5",
|
| 56 |
+
solver_order=2,
|
| 57 |
+
subfolder="scheduler",
|
| 58 |
+
use_karras_sigmas=True,
|
| 59 |
+
final_sigmas_type="sigma_min",
|
| 60 |
+
algorithm_type="sde-dpmsolver++",
|
| 61 |
+
prediction_type="epsilon",
|
| 62 |
+
thresholding=False,
|
| 63 |
+
denoise_final=True,
|
| 64 |
+
device_map="cuda",
|
| 65 |
+
torch_dtype=torch.float16,
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
# Stable Diffusion Pipeline URL
|
| 69 |
+
# base_model_url = "https://huggingface.co/broyang/hentaidigitalart_v20/blob/main/realcartoon3d_v15.safetensors"
|
| 70 |
+
base_model_url = "https://huggingface.co/Lykon/AbsoluteReality/blob/main/AbsoluteReality_1.8.1_pruned.safetensors"
|
| 71 |
+
vae_url = "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/vae-ft-mse-840000-ema-pruned.safetensors"
|
| 72 |
+
|
| 73 |
+
vae = AutoencoderKL.from_single_file(vae_url, torch_dtype=torch.float16).to("cuda")
|
| 74 |
+
vae.to(memory_format=torch.channels_last)
|
| 75 |
+
|
| 76 |
+
pipe = StableDiffusionControlNetPipeline.from_single_file(
|
| 77 |
+
base_model_url,
|
| 78 |
+
# safety_checker=None,
|
| 79 |
+
# load_safety_checker=True,
|
| 80 |
+
controlnet=controlnet,
|
| 81 |
+
scheduler=scheduler,
|
| 82 |
+
vae=vae,
|
| 83 |
+
torch_dtype=torch.float16,
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
pipe.load_textual_inversion(
|
| 87 |
+
"broyang/hentaidigitalart_v20",
|
| 88 |
+
weight_name="EasyNegativeV2.safetensors",
|
| 89 |
+
token="EasyNegativeV2",
|
| 90 |
+
)
|
| 91 |
+
pipe.load_textual_inversion(
|
| 92 |
+
"broyang/hentaidigitalart_v20", weight_name="badhandv4.pt", token="badhandv4"
|
| 93 |
+
)
|
| 94 |
+
pipe.load_textual_inversion(
|
| 95 |
+
"broyang/hentaidigitalart_v20", weight_name="fcNeg-neg.pt", token="fcNeg-neg"
|
| 96 |
+
)
|
| 97 |
+
pipe.load_textual_inversion(
|
| 98 |
+
"broyang/hentaidigitalart_v20", weight_name="HDA_Ahegao.pt", token="HDA_Ahegao"
|
| 99 |
+
)
|
| 100 |
+
pipe.load_textual_inversion(
|
| 101 |
+
"broyang/hentaidigitalart_v20",
|
| 102 |
+
weight_name="HDA_Bondage.pt",
|
| 103 |
+
token="HDA_Bondage",
|
| 104 |
+
)
|
| 105 |
+
pipe.load_textual_inversion(
|
| 106 |
+
"broyang/hentaidigitalart_v20",
|
| 107 |
+
weight_name="HDA_pet_play.pt",
|
| 108 |
+
token="HDA_pet_play",
|
| 109 |
+
)
|
| 110 |
+
pipe.load_textual_inversion(
|
| 111 |
+
"broyang/hentaidigitalart_v20",
|
| 112 |
+
weight_name="HDA_unconventional maid.pt",
|
| 113 |
+
token="HDA_unconventional_maid",
|
| 114 |
+
)
|
| 115 |
+
pipe.load_textual_inversion(
|
| 116 |
+
"broyang/hentaidigitalart_v20",
|
| 117 |
+
weight_name="HDA_NakedHoodie.pt",
|
| 118 |
+
token="HDA_NakedHoodie",
|
| 119 |
+
)
|
| 120 |
+
pipe.load_textual_inversion(
|
| 121 |
+
"broyang/hentaidigitalart_v20",
|
| 122 |
+
weight_name="HDA_NunDress.pt",
|
| 123 |
+
token="HDA_NunDress",
|
| 124 |
+
)
|
| 125 |
+
pipe.load_textual_inversion(
|
| 126 |
+
"broyang/hentaidigitalart_v20",
|
| 127 |
+
weight_name="HDA_Shibari.pt",
|
| 128 |
+
token="HDA_Shibari",
|
| 129 |
+
)
|
| 130 |
+
pipe.to("cuda")
|
| 131 |
+
|
| 132 |
+
# experimental speedup?
|
| 133 |
+
# pipe.compile()
|
| 134 |
+
# torch.cuda.empty_cache()
|
| 135 |
+
# gc.collect()
|
| 136 |
+
print("---------------Loaded controlnet pipeline---------------")
|
| 137 |
+
|
| 138 |
+
@spaces.GPU(duration=12)
|
| 139 |
+
def init(pipe):
|
| 140 |
+
pipe.enable_xformers_memory_efficient_attention()
|
| 141 |
+
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
| 142 |
+
pipe.unet.set_attn_processor(AttnProcessor2_0())
|
| 143 |
+
print("Model Compiled!")
|
| 144 |
+
|
| 145 |
+
init(pipe)
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
| 149 |
+
if randomize_seed:
|
| 150 |
+
seed = random.randint(0, MAX_SEED)
|
| 151 |
+
return seed
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
def get_additional_prompt():
|
| 155 |
+
prompt = "hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed"
|
| 156 |
+
top = ["tank top", "blouse", "button up shirt", "sweater", "corset top"]
|
| 157 |
+
bottom = [
|
| 158 |
+
"short skirt",
|
| 159 |
+
"athletic shorts",
|
| 160 |
+
"jean shorts",
|
| 161 |
+
"pleated skirt",
|
| 162 |
+
"short skirt",
|
| 163 |
+
"leggings",
|
| 164 |
+
"high-waisted shorts",
|
| 165 |
+
]
|
| 166 |
+
accessory = [
|
| 167 |
+
"knee-high boots",
|
| 168 |
+
"gloves",
|
| 169 |
+
"Thigh-high stockings",
|
| 170 |
+
"Garter belt",
|
| 171 |
+
"choker",
|
| 172 |
+
"necklace",
|
| 173 |
+
"headband",
|
| 174 |
+
"headphones",
|
| 175 |
+
]
|
| 176 |
+
return f"{prompt}, {random.choice(top)}, {random.choice(bottom)}, {random.choice(accessory)}, score_9"
|
| 177 |
+
# outfit = ["schoolgirl outfit", "playboy outfit", "red dress", "gala dress", "cheerleader outfit", "nurse outfit", "Kimono"]
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
def get_prompt(prompt, additional_prompt):
|
| 181 |
+
interior = "design-style interior designed (interior space), captured with a DSLR camera using f/10 aperture, 1/60 sec shutter speed, ISO 400, 20mm focal length, tungsten white balance, (sharp focus), professional photography, high-resolution, 8k, Pulitzer Prize-winning"
|
| 182 |
+
default = "hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed"
|
| 183 |
+
default2 = f"professional 3d model {prompt},octane render,highly detailed,volumetric,dramatic lighting,hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed"
|
| 184 |
+
randomize = get_additional_prompt()
|
| 185 |
+
# nude = "NSFW,((nude)),medium bare breasts,hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed"
|
| 186 |
+
# bodypaint = "((fully naked with no clothes)),nude naked seethroughxray,invisiblebodypaint,rating_newd,NSFW"
|
| 187 |
+
lab_girl = "hyperrealistic photography, extremely detailed, shy assistant wearing minidress boots and gloves, laboratory background, score_9, 1girl"
|
| 188 |
+
pet_play = "hyperrealistic photography, extremely detailed, playful, blush, glasses, collar, score_9, HDA_pet_play"
|
| 189 |
+
bondage = "hyperrealistic photography, extremely detailed, submissive, glasses, score_9, HDA_Bondage"
|
| 190 |
+
# ahegao = "((invisible clothing)), hyperrealistic photography,exposed vagina,sexy,nsfw,HDA_Ahegao"
|
| 191 |
+
ahegao2 = "(invisiblebodypaint),rating_newd,HDA_Ahegao"
|
| 192 |
+
athleisure = "hyperrealistic photography, extremely detailed, 1girl athlete, exhausted embarrassed sweaty,outdoors, ((athleisure clothing)), score_9"
|
| 193 |
+
atompunk = "((atompunk world)), hyperrealistic photography, extremely detailed, short hair, bodysuit, glasses, neon cyberpunk background, score_9"
|
| 194 |
+
maid = "hyperrealistic photography, extremely detailed, shy, blushing, score_9, pastel background, HDA_unconventional_maid"
|
| 195 |
+
nundress = "hyperrealistic photography, extremely detailed, shy, blushing, fantasy background, score_9, HDA_NunDress"
|
| 196 |
+
naked_hoodie = "hyperrealistic photography, extremely detailed, medium hair, cityscape, (neon lights), score_9, HDA_NakedHoodie"
|
| 197 |
+
abg = "(1girl, asian body covered in words, words on body, tattoos of (words) on body),(masterpiece, best quality),medium breasts,(intricate details),unity 8k wallpaper,ultra detailed,(pastel colors),beautiful and aesthetic,see-through (clothes),detailed,solo"
|
| 198 |
+
# shibari = "extremely detailed, hyperrealistic photography, earrings, blushing, lace choker, tattoo, medium hair, score_9, HDA_Shibari"
|
| 199 |
+
shibari2 = "octane render, highly detailed, volumetric, HDA_Shibari"
|
| 200 |
+
|
| 201 |
+
if prompt == "":
|
| 202 |
+
girls = [
|
| 203 |
+
randomize,
|
| 204 |
+
pet_play,
|
| 205 |
+
bondage,
|
| 206 |
+
lab_girl,
|
| 207 |
+
athleisure,
|
| 208 |
+
atompunk,
|
| 209 |
+
maid,
|
| 210 |
+
nundress,
|
| 211 |
+
naked_hoodie,
|
| 212 |
+
abg,
|
| 213 |
+
shibari2,
|
| 214 |
+
ahegao2,
|
| 215 |
+
]
|
| 216 |
+
prompts_nsfw = [abg, shibari2, ahegao2]
|
| 217 |
+
prompt = f"{random.choice(girls)}"
|
| 218 |
+
prompt = f"boho chic"
|
| 219 |
+
# print(f"-------------{preset}-------------")
|
| 220 |
+
else:
|
| 221 |
+
prompt = f"Photo from Pinterest of {prompt} {interior}"
|
| 222 |
+
# prompt = default2
|
| 223 |
+
return f"{prompt} f{additional_prompt}"
|
| 224 |
+
|
| 225 |
+
|
| 226 |
+
style_list = [
|
| 227 |
+
{"name": "None", "prompt": ""},
|
| 228 |
+
{"name": "Minimalistic", "prompt": "Minimalistic"},
|
| 229 |
+
{"name": "Boho Chic", "prompt": "boho chic"},
|
| 230 |
+
{
|
| 231 |
+
"name": "Saudi Prince Gold",
|
| 232 |
+
"prompt": "saudi prince gold",
|
| 233 |
+
},
|
| 234 |
+
{
|
| 235 |
+
"name": "Modern Farmhouse",
|
| 236 |
+
"prompt": "modern farmhouse",
|
| 237 |
+
},
|
| 238 |
+
{
|
| 239 |
+
"name": "Neoclassical",
|
| 240 |
+
"prompt": "Neoclassical",
|
| 241 |
+
},
|
| 242 |
+
{
|
| 243 |
+
"name": "Eclectic",
|
| 244 |
+
"prompt": "Eclectic",
|
| 245 |
+
},
|
| 246 |
+
{
|
| 247 |
+
"name": "Parisian White",
|
| 248 |
+
"prompt": "Parisian White",
|
| 249 |
+
},
|
| 250 |
+
{
|
| 251 |
+
"name": "Hollywood Glam",
|
| 252 |
+
"prompt": "Hollywood Glam",
|
| 253 |
+
},
|
| 254 |
+
{
|
| 255 |
+
"name": "Scandinavian",
|
| 256 |
+
"prompt": "Scandinavian",
|
| 257 |
+
},
|
| 258 |
+
{
|
| 259 |
+
"name": "Japanese",
|
| 260 |
+
"prompt": "Japanese",
|
| 261 |
+
},
|
| 262 |
+
{
|
| 263 |
+
"name": "Texas Cowboy",
|
| 264 |
+
"prompt": "Texas Cowboy",
|
| 265 |
+
},
|
| 266 |
+
{
|
| 267 |
+
"name": "Midcentury Modern",
|
| 268 |
+
"prompt": "Midcentury Modern",
|
| 269 |
+
},
|
| 270 |
+
{
|
| 271 |
+
"name": "Beach",
|
| 272 |
+
"prompt": "Beach",
|
| 273 |
+
},
|
| 274 |
+
{
|
| 275 |
+
"name": "The Matrix",
|
| 276 |
+
"prompt": "Neon (atompunk world) retro cyberpunk background",
|
| 277 |
+
},
|
| 278 |
+
]
|
| 279 |
+
|
| 280 |
+
styles = {k["name"]: (k["prompt"]) for k in style_list}
|
| 281 |
+
STYLE_NAMES = list(styles.keys())
|
| 282 |
+
|
| 283 |
+
|
| 284 |
+
def apply_style(style_name):
|
| 285 |
+
if style_name in styles:
|
| 286 |
+
p = styles.get(style_name, "boho chic")
|
| 287 |
+
return p
|
| 288 |
+
|
| 289 |
+
|
| 290 |
+
css = """
|
| 291 |
+
h1 {
|
| 292 |
+
text-align: center;
|
| 293 |
+
display:block;
|
| 294 |
+
}
|
| 295 |
+
h2 {
|
| 296 |
+
text-align: center;
|
| 297 |
+
display:block;
|
| 298 |
+
}
|
| 299 |
+
h3 {
|
| 300 |
+
text-align: center;
|
| 301 |
+
display:block;
|
| 302 |
+
}
|
| 303 |
+
.gradio-container{max-width: 1200px !important}
|
| 304 |
+
footer {visibility: hidden}
|
| 305 |
+
"""
|
| 306 |
+
with gr.Blocks(theme="bethecloud/storj_theme", css=css) as demo:
|
| 307 |
+
#############################################################################
|
| 308 |
+
with gr.Row():
|
| 309 |
+
with gr.Accordion("Advanced options", open=show_options, visible=show_options):
|
| 310 |
+
num_images = gr.Slider(
|
| 311 |
+
label="Images", minimum=1, maximum=4, value=1, step=1
|
| 312 |
+
)
|
| 313 |
+
image_resolution = gr.Slider(
|
| 314 |
+
label="Image resolution",
|
| 315 |
+
minimum=256,
|
| 316 |
+
maximum=1024,
|
| 317 |
+
value=512,
|
| 318 |
+
step=256,
|
| 319 |
+
)
|
| 320 |
+
preprocess_resolution = gr.Slider(
|
| 321 |
+
label="Preprocess resolution",
|
| 322 |
+
minimum=128,
|
| 323 |
+
maximum=1024,
|
| 324 |
+
value=512,
|
| 325 |
+
step=1,
|
| 326 |
+
)
|
| 327 |
+
num_steps = gr.Slider(
|
| 328 |
+
label="Number of steps", minimum=1, maximum=100, value=15, step=1
|
| 329 |
+
) # 20/4.5 or 12 without lora, 4 with lora
|
| 330 |
+
guidance_scale = gr.Slider(
|
| 331 |
+
label="Guidance scale", minimum=0.1, maximum=30.0, value=5.5, step=0.1
|
| 332 |
+
) # 5 without lora, 2 with lora
|
| 333 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
|
| 334 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 335 |
+
a_prompt = gr.Textbox(
|
| 336 |
+
label="Additional prompt",
|
| 337 |
+
value="design-style interior designed (interior space), captured with a DSLR camera using f/10 aperture, 1/60 sec shutter speed, ISO 400, 20mm focal length, tungsten white balance, (sharp focus), professional photography, high-resolution, 8k, Pulitzer Prize-winning",
|
| 338 |
+
)
|
| 339 |
+
n_prompt = gr.Textbox(
|
| 340 |
+
label="Negative prompt",
|
| 341 |
+
value="EasyNegativeV2, fcNeg, (badhandv4:1.4), (worst quality, low quality, bad quality, normal quality:2.0), (bad hands, missing fingers, extra fingers:2.0)",
|
| 342 |
+
)
|
| 343 |
+
#############################################################################
|
| 344 |
+
# input text
|
| 345 |
+
with gr.Row():
|
| 346 |
+
gr.Text(
|
| 347 |
+
label="Interior Design Style Examples",
|
| 348 |
+
value="Eclectic, Maximalist, Bohemian, Scandinavian, Minimalist, Rustic, Modern Farmhouse, Contemporary, Luxury, Airbnb, Boho Chic, Midcentury Modern, Art Deco, Zen, Beach, Neoclassical, Industrial, Biophilic, Eco-friendly, Hollywood Glam, Parisian White, Saudi Prince Gold, French Country, Monster Energy Drink, Cyberpunk, Vaporwave, Baroque, etc.\n\nPro tip: add a color to customize it! You can also describe the furniture type.",
|
| 349 |
+
)
|
| 350 |
+
with gr.Column():
|
| 351 |
+
prompt = gr.Textbox(
|
| 352 |
+
label="Custom Prompt",
|
| 353 |
+
placeholder="boho chic",
|
| 354 |
+
)
|
| 355 |
+
with gr.Row(visible=True):
|
| 356 |
+
style_selection = gr.Radio(
|
| 357 |
+
show_label=True,
|
| 358 |
+
container=True,
|
| 359 |
+
interactive=True,
|
| 360 |
+
choices=STYLE_NAMES,
|
| 361 |
+
value="None",
|
| 362 |
+
label="Design Styles",
|
| 363 |
+
)
|
| 364 |
+
# input image
|
| 365 |
+
with gr.Row():
|
| 366 |
+
with gr.Column():
|
| 367 |
+
image = gr.Image(
|
| 368 |
+
label="Input",
|
| 369 |
+
sources=["upload"],
|
| 370 |
+
show_label=True,
|
| 371 |
+
mirror_webcam=True,
|
| 372 |
+
format="webp",
|
| 373 |
+
)
|
| 374 |
+
# run button
|
| 375 |
+
with gr.Column():
|
| 376 |
+
run_button = gr.Button(value="Use this one", size=["lg"], visible=False)
|
| 377 |
+
# output image
|
| 378 |
+
with gr.Column():
|
| 379 |
+
result = gr.Image(
|
| 380 |
+
label="Output",
|
| 381 |
+
interactive=False,
|
| 382 |
+
format="webp",
|
| 383 |
+
show_share_button=False,
|
| 384 |
+
)
|
| 385 |
+
# Use this image button
|
| 386 |
+
with gr.Column():
|
| 387 |
+
use_ai_button = gr.Button(
|
| 388 |
+
value="Use this one", size=["lg"], visible=False
|
| 389 |
+
)
|
| 390 |
+
config = [
|
| 391 |
+
image,
|
| 392 |
+
style_selection,
|
| 393 |
+
prompt,
|
| 394 |
+
a_prompt,
|
| 395 |
+
n_prompt,
|
| 396 |
+
num_images,
|
| 397 |
+
image_resolution,
|
| 398 |
+
preprocess_resolution,
|
| 399 |
+
num_steps,
|
| 400 |
+
guidance_scale,
|
| 401 |
+
seed,
|
| 402 |
+
]
|
| 403 |
+
|
| 404 |
+
with gr.Row():
|
| 405 |
+
helper_text = gr.Markdown(
|
| 406 |
+
"## Tap and hold (on mobile) to save the image.", visible=True
|
| 407 |
+
)
|
| 408 |
+
|
| 409 |
+
# image processing
|
| 410 |
+
@gr.on(
|
| 411 |
+
triggers=[image.upload, prompt.submit, run_button.click],
|
| 412 |
+
inputs=config,
|
| 413 |
+
outputs=result,
|
| 414 |
+
show_progress="minimal",
|
| 415 |
+
)
|
| 416 |
+
def auto_process_image(
|
| 417 |
+
image,
|
| 418 |
+
style_selection,
|
| 419 |
+
prompt,
|
| 420 |
+
a_prompt,
|
| 421 |
+
n_prompt,
|
| 422 |
+
num_images,
|
| 423 |
+
image_resolution,
|
| 424 |
+
preprocess_resolution,
|
| 425 |
+
num_steps,
|
| 426 |
+
guidance_scale,
|
| 427 |
+
seed,
|
| 428 |
+
progress=gr.Progress(track_tqdm=True),
|
| 429 |
+
):
|
| 430 |
+
return process_image(
|
| 431 |
+
image,
|
| 432 |
+
style_selection,
|
| 433 |
+
prompt,
|
| 434 |
+
a_prompt,
|
| 435 |
+
n_prompt,
|
| 436 |
+
num_images,
|
| 437 |
+
image_resolution,
|
| 438 |
+
preprocess_resolution,
|
| 439 |
+
num_steps,
|
| 440 |
+
guidance_scale,
|
| 441 |
+
seed,
|
| 442 |
+
)
|
| 443 |
+
|
| 444 |
+
# AI Image Processing
|
| 445 |
+
@gr.on(
|
| 446 |
+
triggers=[use_ai_button.click],
|
| 447 |
+
inputs=config,
|
| 448 |
+
outputs=result,
|
| 449 |
+
show_progress="minimal",
|
| 450 |
+
)
|
| 451 |
+
def submit(
|
| 452 |
+
image,
|
| 453 |
+
style_selection,
|
| 454 |
+
prompt,
|
| 455 |
+
a_prompt,
|
| 456 |
+
n_prompt,
|
| 457 |
+
num_images,
|
| 458 |
+
image_resolution,
|
| 459 |
+
preprocess_resolution,
|
| 460 |
+
num_steps,
|
| 461 |
+
guidance_scale,
|
| 462 |
+
seed,
|
| 463 |
+
progress=gr.Progress(track_tqdm=True),
|
| 464 |
+
):
|
| 465 |
+
return process_image(
|
| 466 |
+
image,
|
| 467 |
+
style_selection,
|
| 468 |
+
prompt,
|
| 469 |
+
a_prompt,
|
| 470 |
+
n_prompt,
|
| 471 |
+
num_images,
|
| 472 |
+
image_resolution,
|
| 473 |
+
preprocess_resolution,
|
| 474 |
+
num_steps,
|
| 475 |
+
guidance_scale,
|
| 476 |
+
seed,
|
| 477 |
+
)
|
| 478 |
+
|
| 479 |
+
# Change input to result
|
| 480 |
+
@gr.on(
|
| 481 |
+
triggers=[use_ai_button.click],
|
| 482 |
+
inputs=None,
|
| 483 |
+
outputs=image,
|
| 484 |
+
show_progress="hidden",
|
| 485 |
+
)
|
| 486 |
+
def update_input():
|
| 487 |
+
try:
|
| 488 |
+
print("Updating image to AI Temp Image")
|
| 489 |
+
ai_temp_image = Image.open("temp_image.jpg")
|
| 490 |
+
return ai_temp_image
|
| 491 |
+
except FileNotFoundError:
|
| 492 |
+
print("No AI Image Available")
|
| 493 |
+
return None
|
| 494 |
+
|
| 495 |
+
# Turn off buttons when processing
|
| 496 |
+
@gr.on(
|
| 497 |
+
triggers=[image.upload, use_ai_button.click, run_button.click],
|
| 498 |
+
inputs=None,
|
| 499 |
+
outputs=[run_button, use_ai_button],
|
| 500 |
+
show_progress="hidden",
|
| 501 |
+
)
|
| 502 |
+
def turn_buttons_off():
|
| 503 |
+
return gr.update(visible=False), gr.update(visible=False)
|
| 504 |
+
|
| 505 |
+
# Turn on buttons when processing is complete
|
| 506 |
+
@gr.on(
|
| 507 |
+
triggers=[result.change],
|
| 508 |
+
inputs=None,
|
| 509 |
+
outputs=[use_ai_button, run_button],
|
| 510 |
+
show_progress="hidden",
|
| 511 |
+
)
|
| 512 |
+
def turn_buttons_on():
|
| 513 |
+
return gr.update(visible=True), gr.update(visible=True)
|
| 514 |
+
|
| 515 |
+
|
| 516 |
+
@spaces.GPU(duration=10)
|
| 517 |
+
@torch.inference_mode()
|
| 518 |
+
def process_image(
|
| 519 |
+
image,
|
| 520 |
+
style_selection,
|
| 521 |
+
prompt,
|
| 522 |
+
a_prompt,
|
| 523 |
+
n_prompt,
|
| 524 |
+
num_images,
|
| 525 |
+
image_resolution,
|
| 526 |
+
preprocess_resolution,
|
| 527 |
+
num_steps,
|
| 528 |
+
guidance_scale,
|
| 529 |
+
seed,
|
| 530 |
+
progress=gr.Progress(track_tqdm=True),
|
| 531 |
+
):
|
| 532 |
+
torch.cuda.synchronize()
|
| 533 |
+
preprocess_start = time.time()
|
| 534 |
+
print("processing image")
|
| 535 |
+
preprocessor.load("NormalBae")
|
| 536 |
+
# preprocessor.load("Canny") #20 steps, 9 guidance, 512, 512
|
| 537 |
+
|
| 538 |
+
global compiled
|
| 539 |
+
if not compiled:
|
| 540 |
+
print("Not Compiled")
|
| 541 |
+
compiled = True
|
| 542 |
+
|
| 543 |
+
seed = random.randint(0, MAX_SEED)
|
| 544 |
+
generator = torch.cuda.manual_seed(seed)
|
| 545 |
+
control_image = preprocessor(
|
| 546 |
+
image=image,
|
| 547 |
+
image_resolution=image_resolution,
|
| 548 |
+
detect_resolution=preprocess_resolution,
|
| 549 |
+
)
|
| 550 |
+
preprocess_time = time.time() - preprocess_start
|
| 551 |
+
if style_selection is not None or style_selection != "None":
|
| 552 |
+
prompt = (
|
| 553 |
+
"Photo from Pinterest of "
|
| 554 |
+
+ apply_style(style_selection)
|
| 555 |
+
+ " "
|
| 556 |
+
+ prompt
|
| 557 |
+
+ " "
|
| 558 |
+
+ a_prompt
|
| 559 |
+
)
|
| 560 |
+
else:
|
| 561 |
+
prompt = str(get_prompt(prompt, a_prompt))
|
| 562 |
+
negative_prompt = str(n_prompt)
|
| 563 |
+
print(prompt)
|
| 564 |
+
start = time.time()
|
| 565 |
+
results = pipe(
|
| 566 |
+
prompt=prompt,
|
| 567 |
+
negative_prompt=negative_prompt,
|
| 568 |
+
guidance_scale=guidance_scale,
|
| 569 |
+
num_images_per_prompt=num_images,
|
| 570 |
+
num_inference_steps=num_steps,
|
| 571 |
+
generator=generator,
|
| 572 |
+
image=control_image,
|
| 573 |
+
).images[0]
|
| 574 |
+
torch.cuda.synchronize()
|
| 575 |
+
torch.cuda.empty_cache()
|
| 576 |
+
print(
|
| 577 |
+
f"\n-------------------------Preprocess done in: {preprocess_time:.2f} seconds-------------------------"
|
| 578 |
+
)
|
| 579 |
+
print(
|
| 580 |
+
f"\n-------------------------Inference done in: {time.time() - start:.2f} seconds-------------------------"
|
| 581 |
+
)
|
| 582 |
+
|
| 583 |
+
# timestamp = int(time.time())
|
| 584 |
+
# if not os.path.exists("./outputs"):
|
| 585 |
+
# os.makedirs("./outputs")
|
| 586 |
+
# img_path = f"./{timestamp}.jpg"
|
| 587 |
+
# results_path = f"./{timestamp}_out_{prompt}.jpg"
|
| 588 |
+
# imageio.imsave(img_path, image)
|
| 589 |
+
# results.save(results_path)
|
| 590 |
+
results.save("temp_image.jpg")
|
| 591 |
+
|
| 592 |
+
# api.upload_file(
|
| 593 |
+
# path_or_fileobj=img_path,
|
| 594 |
+
# path_in_repo=img_path,
|
| 595 |
+
# repo_id="broyang/anime-ai-outputs",
|
| 596 |
+
# repo_type="dataset",
|
| 597 |
+
# token=API_KEY,
|
| 598 |
+
# run_as_future=True,
|
| 599 |
+
# )
|
| 600 |
+
# api.upload_file(
|
| 601 |
+
# path_or_fileobj=results_path,
|
| 602 |
+
# path_in_repo=results_path,
|
| 603 |
+
# repo_id="broyang/anime-ai-outputs",
|
| 604 |
+
# repo_type="dataset",
|
| 605 |
+
# token=API_KEY,
|
| 606 |
+
# run_as_future=True,
|
| 607 |
+
# )
|
| 608 |
+
|
| 609 |
+
return results
|
| 610 |
+
|
| 611 |
+
|
| 612 |
+
if prod:
|
| 613 |
+
demo.queue(max_size=20).launch(server_name="localhost", server_port=port)
|
| 614 |
+
else:
|
| 615 |
+
demo.queue(api_open=False).launch(show_api=False)
|
app.zip
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:1e24bf5be8b15309a5f50ad7c94d94dfb5fab0bff4f0baea1f1a67af5cc3f925
|
| 3 |
-
size 13317
|
|
|
|
|
|
|
|
|
|
|
|
app/app.py
DELETED
|
@@ -1,451 +0,0 @@
|
|
| 1 |
-
prod = False
|
| 2 |
-
port = 8080
|
| 3 |
-
show_options = False
|
| 4 |
-
if prod:
|
| 5 |
-
port = 8081
|
| 6 |
-
# show_options = False
|
| 7 |
-
|
| 8 |
-
import os
|
| 9 |
-
import gc
|
| 10 |
-
import random
|
| 11 |
-
import time
|
| 12 |
-
import gradio as gr
|
| 13 |
-
import numpy as np
|
| 14 |
-
# import imageio
|
| 15 |
-
import torch
|
| 16 |
-
from PIL import Image
|
| 17 |
-
from diffusers import (
|
| 18 |
-
ControlNetModel,
|
| 19 |
-
DPMSolverMultistepScheduler,
|
| 20 |
-
StableDiffusionControlNetPipeline,
|
| 21 |
-
AutoencoderKL,
|
| 22 |
-
)
|
| 23 |
-
from diffusers.models.attention_processor import AttnProcessor2_0
|
| 24 |
-
from preprocess import Preprocessor
|
| 25 |
-
MAX_SEED = np.iinfo(np.int32).max
|
| 26 |
-
API_KEY = os.environ.get("API_KEY", None)
|
| 27 |
-
|
| 28 |
-
print("CUDA version:", torch.version.cuda)
|
| 29 |
-
print("loading pipe")
|
| 30 |
-
compiled = False
|
| 31 |
-
# api = HfApi()
|
| 32 |
-
|
| 33 |
-
import spaces
|
| 34 |
-
|
| 35 |
-
preprocessor = Preprocessor()
|
| 36 |
-
preprocessor.load("NormalBae")
|
| 37 |
-
|
| 38 |
-
if gr.NO_RELOAD:
|
| 39 |
-
torch.cuda.max_memory_allocated(device="cuda")
|
| 40 |
-
|
| 41 |
-
# Controlnet Normal
|
| 42 |
-
model_id = "lllyasviel/control_v11p_sd15_normalbae"
|
| 43 |
-
print("initializing controlnet")
|
| 44 |
-
controlnet = ControlNetModel.from_pretrained(
|
| 45 |
-
model_id,
|
| 46 |
-
torch_dtype=torch.float16,
|
| 47 |
-
attn_implementation="flash_attention_2",
|
| 48 |
-
).to("cuda")
|
| 49 |
-
|
| 50 |
-
# Scheduler
|
| 51 |
-
scheduler = DPMSolverMultistepScheduler.from_pretrained(
|
| 52 |
-
"runwayml/stable-diffusion-v1-5",
|
| 53 |
-
solver_order=2,
|
| 54 |
-
subfolder="scheduler",
|
| 55 |
-
use_karras_sigmas=True,
|
| 56 |
-
final_sigmas_type="sigma_min",
|
| 57 |
-
algorithm_type="sde-dpmsolver++",
|
| 58 |
-
prediction_type="epsilon",
|
| 59 |
-
thresholding=False,
|
| 60 |
-
denoise_final=True,
|
| 61 |
-
device_map="cuda",
|
| 62 |
-
torch_dtype=torch.float16,
|
| 63 |
-
)
|
| 64 |
-
|
| 65 |
-
# Stable Diffusion Pipeline URL
|
| 66 |
-
# base_model_url = "https://huggingface.co/broyang/hentaidigitalart_v20/blob/main/realcartoon3d_v15.safetensors"
|
| 67 |
-
base_model_url = "https://huggingface.co/Lykon/AbsoluteReality/blob/main/AbsoluteReality_1.8.1_pruned.safetensors"
|
| 68 |
-
vae_url = "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/vae-ft-mse-840000-ema-pruned.safetensors"
|
| 69 |
-
|
| 70 |
-
vae = AutoencoderKL.from_single_file(vae_url, torch_dtype=torch.float16).to("cuda")
|
| 71 |
-
vae.to(memory_format=torch.channels_last)
|
| 72 |
-
|
| 73 |
-
pipe = StableDiffusionControlNetPipeline.from_single_file(
|
| 74 |
-
base_model_url,
|
| 75 |
-
# safety_checker=None,
|
| 76 |
-
# load_safety_checker=True,
|
| 77 |
-
controlnet=controlnet,
|
| 78 |
-
scheduler=scheduler,
|
| 79 |
-
vae=vae,
|
| 80 |
-
torch_dtype=torch.float16,
|
| 81 |
-
)
|
| 82 |
-
|
| 83 |
-
pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="EasyNegativeV2.safetensors", token="EasyNegativeV2",)
|
| 84 |
-
pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="badhandv4.pt", token="badhandv4")
|
| 85 |
-
pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="fcNeg-neg.pt", token="fcNeg-neg")
|
| 86 |
-
pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_Ahegao.pt", token="HDA_Ahegao")
|
| 87 |
-
pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_Bondage.pt", token="HDA_Bondage")
|
| 88 |
-
pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_pet_play.pt", token="HDA_pet_play")
|
| 89 |
-
pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_unconventional maid.pt", token="HDA_unconventional_maid")
|
| 90 |
-
pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_NakedHoodie.pt", token="HDA_NakedHoodie")
|
| 91 |
-
pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_NunDress.pt", token="HDA_NunDress")
|
| 92 |
-
pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_Shibari.pt", token="HDA_Shibari")
|
| 93 |
-
pipe.to("cuda")
|
| 94 |
-
|
| 95 |
-
# experimental speedup?
|
| 96 |
-
# pipe.compile()
|
| 97 |
-
# torch.cuda.empty_cache()
|
| 98 |
-
# gc.collect()
|
| 99 |
-
print("---------------Loaded controlnet pipeline---------------")
|
| 100 |
-
|
| 101 |
-
@spaces.GPU(duration=12)
|
| 102 |
-
def init(pipe):
|
| 103 |
-
pipe.enable_xformers_memory_efficient_attention()
|
| 104 |
-
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
| 105 |
-
pipe.unet.set_attn_processor(AttnProcessor2_0())
|
| 106 |
-
print("Model Compiled!")
|
| 107 |
-
init(pipe)
|
| 108 |
-
|
| 109 |
-
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
| 110 |
-
if randomize_seed:
|
| 111 |
-
seed = random.randint(0, MAX_SEED)
|
| 112 |
-
return seed
|
| 113 |
-
|
| 114 |
-
def get_additional_prompt():
|
| 115 |
-
prompt = "hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed"
|
| 116 |
-
top = ["tank top", "blouse", "button up shirt", "sweater", "corset top"]
|
| 117 |
-
bottom = ["short skirt", "athletic shorts", "jean shorts", "pleated skirt", "short skirt", "leggings", "high-waisted shorts"]
|
| 118 |
-
accessory = ["knee-high boots", "gloves", "Thigh-high stockings", "Garter belt", "choker", "necklace", "headband", "headphones"]
|
| 119 |
-
return f"{prompt}, {random.choice(top)}, {random.choice(bottom)}, {random.choice(accessory)}, score_9"
|
| 120 |
-
# outfit = ["schoolgirl outfit", "playboy outfit", "red dress", "gala dress", "cheerleader outfit", "nurse outfit", "Kimono"]
|
| 121 |
-
|
| 122 |
-
def get_prompt(prompt, additional_prompt):
|
| 123 |
-
interior = "design-style interior designed (interior space), captured with a DSLR camera using f/10 aperture, 1/60 sec shutter speed, ISO 400, 20mm focal length, tungsten white balance, (sharp focus), professional photography, high-resolution, 8k, Pulitzer Prize-winning"
|
| 124 |
-
default = "hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed"
|
| 125 |
-
default2 = f"professional 3d model {prompt},octane render,highly detailed,volumetric,dramatic lighting,hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed"
|
| 126 |
-
randomize = get_additional_prompt()
|
| 127 |
-
# nude = "NSFW,((nude)),medium bare breasts,hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed"
|
| 128 |
-
# bodypaint = "((fully naked with no clothes)),nude naked seethroughxray,invisiblebodypaint,rating_newd,NSFW"
|
| 129 |
-
lab_girl = "hyperrealistic photography, extremely detailed, shy assistant wearing minidress boots and gloves, laboratory background, score_9, 1girl"
|
| 130 |
-
pet_play = "hyperrealistic photography, extremely detailed, playful, blush, glasses, collar, score_9, HDA_pet_play"
|
| 131 |
-
bondage = "hyperrealistic photography, extremely detailed, submissive, glasses, score_9, HDA_Bondage"
|
| 132 |
-
# ahegao = "((invisible clothing)), hyperrealistic photography,exposed vagina,sexy,nsfw,HDA_Ahegao"
|
| 133 |
-
ahegao2 = "(invisiblebodypaint),rating_newd,HDA_Ahegao"
|
| 134 |
-
athleisure = "hyperrealistic photography, extremely detailed, 1girl athlete, exhausted embarrassed sweaty,outdoors, ((athleisure clothing)), score_9"
|
| 135 |
-
atompunk = "((atompunk world)), hyperrealistic photography, extremely detailed, short hair, bodysuit, glasses, neon cyberpunk background, score_9"
|
| 136 |
-
maid = "hyperrealistic photography, extremely detailed, shy, blushing, score_9, pastel background, HDA_unconventional_maid"
|
| 137 |
-
nundress = "hyperrealistic photography, extremely detailed, shy, blushing, fantasy background, score_9, HDA_NunDress"
|
| 138 |
-
naked_hoodie = "hyperrealistic photography, extremely detailed, medium hair, cityscape, (neon lights), score_9, HDA_NakedHoodie"
|
| 139 |
-
abg = "(1girl, asian body covered in words, words on body, tattoos of (words) on body),(masterpiece, best quality),medium breasts,(intricate details),unity 8k wallpaper,ultra detailed,(pastel colors),beautiful and aesthetic,see-through (clothes),detailed,solo"
|
| 140 |
-
# shibari = "extremely detailed, hyperrealistic photography, earrings, blushing, lace choker, tattoo, medium hair, score_9, HDA_Shibari"
|
| 141 |
-
shibari2 = "octane render, highly detailed, volumetric, HDA_Shibari"
|
| 142 |
-
|
| 143 |
-
if prompt == "":
|
| 144 |
-
girls = [randomize, pet_play, bondage, lab_girl, athleisure, atompunk, maid, nundress, naked_hoodie, abg, shibari2, ahegao2]
|
| 145 |
-
prompts_nsfw = [abg, shibari2, ahegao2]
|
| 146 |
-
prompt = f"{random.choice(girls)}"
|
| 147 |
-
prompt = f"boho chic"
|
| 148 |
-
# print(f"-------------{preset}-------------")
|
| 149 |
-
else:
|
| 150 |
-
prompt = f"Photo from Pinterest of {prompt} {interior}"
|
| 151 |
-
# prompt = default2
|
| 152 |
-
return f"{prompt} f{additional_prompt}"
|
| 153 |
-
|
| 154 |
-
style_list = [
|
| 155 |
-
{
|
| 156 |
-
"name": "None",
|
| 157 |
-
"prompt": ""
|
| 158 |
-
},
|
| 159 |
-
{
|
| 160 |
-
"name": "Minimalistic",
|
| 161 |
-
"prompt": "Minimalistic"
|
| 162 |
-
},
|
| 163 |
-
{
|
| 164 |
-
"name": "Boho Chic",
|
| 165 |
-
"prompt": "boho chic"
|
| 166 |
-
},
|
| 167 |
-
{
|
| 168 |
-
"name": "Saudi Prince Gold",
|
| 169 |
-
"prompt": "saudi prince gold",
|
| 170 |
-
},
|
| 171 |
-
{
|
| 172 |
-
"name": "Modern Farmhouse",
|
| 173 |
-
"prompt": "modern farmhouse",
|
| 174 |
-
},
|
| 175 |
-
{
|
| 176 |
-
"name": "Neoclassical",
|
| 177 |
-
"prompt": "Neoclassical",
|
| 178 |
-
},
|
| 179 |
-
{
|
| 180 |
-
"name": "Eclectic",
|
| 181 |
-
"prompt": "Eclectic",
|
| 182 |
-
},
|
| 183 |
-
{
|
| 184 |
-
"name": "Parisian White",
|
| 185 |
-
"prompt": "Parisian White",
|
| 186 |
-
},
|
| 187 |
-
{
|
| 188 |
-
"name": "Hollywood Glam",
|
| 189 |
-
"prompt": "Hollywood Glam",
|
| 190 |
-
},
|
| 191 |
-
{
|
| 192 |
-
"name": "Scandinavian",
|
| 193 |
-
"prompt": "Scandinavian",
|
| 194 |
-
},
|
| 195 |
-
{
|
| 196 |
-
"name": "Japanese",
|
| 197 |
-
"prompt": "Japanese",
|
| 198 |
-
},
|
| 199 |
-
{
|
| 200 |
-
"name": "Texas Cowboy",
|
| 201 |
-
"prompt": "Texas Cowboy",
|
| 202 |
-
},
|
| 203 |
-
{
|
| 204 |
-
"name": "Midcentury Modern",
|
| 205 |
-
"prompt": "Midcentury Modern",
|
| 206 |
-
},
|
| 207 |
-
{
|
| 208 |
-
"name": "Beach",
|
| 209 |
-
"prompt": "Beach",
|
| 210 |
-
},
|
| 211 |
-
]
|
| 212 |
-
|
| 213 |
-
styles = {k["name"]: (k["prompt"]) for k in style_list}
|
| 214 |
-
STYLE_NAMES = list(styles.keys())
|
| 215 |
-
|
| 216 |
-
def apply_style(style_name):
|
| 217 |
-
if style_name in styles:
|
| 218 |
-
p = styles.get(style_name, "boho chic")
|
| 219 |
-
return p
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
css = """
|
| 223 |
-
h1 {
|
| 224 |
-
text-align: center;
|
| 225 |
-
display:block;
|
| 226 |
-
}
|
| 227 |
-
h2 {
|
| 228 |
-
text-align: center;
|
| 229 |
-
display:block;
|
| 230 |
-
}
|
| 231 |
-
h3 {
|
| 232 |
-
text-align: center;
|
| 233 |
-
display:block;
|
| 234 |
-
}
|
| 235 |
-
.gradio-container{max-width: 1200px !important}
|
| 236 |
-
footer {visibility: hidden}
|
| 237 |
-
"""
|
| 238 |
-
with gr.Blocks(theme="bethecloud/storj_theme", css=css) as demo:
|
| 239 |
-
#############################################################################
|
| 240 |
-
with gr.Row():
|
| 241 |
-
with gr.Accordion("Advanced options", open=show_options, visible=show_options):
|
| 242 |
-
num_images = gr.Slider(
|
| 243 |
-
label="Images", minimum=1, maximum=4, value=1, step=1
|
| 244 |
-
)
|
| 245 |
-
image_resolution = gr.Slider(
|
| 246 |
-
label="Image resolution",
|
| 247 |
-
minimum=256,
|
| 248 |
-
maximum=1024,
|
| 249 |
-
value=512,
|
| 250 |
-
step=256,
|
| 251 |
-
)
|
| 252 |
-
preprocess_resolution = gr.Slider(
|
| 253 |
-
label="Preprocess resolution",
|
| 254 |
-
minimum=128,
|
| 255 |
-
maximum=1024,
|
| 256 |
-
value=512,
|
| 257 |
-
step=1,
|
| 258 |
-
)
|
| 259 |
-
num_steps = gr.Slider(
|
| 260 |
-
label="Number of steps", minimum=1, maximum=100, value=15, step=1
|
| 261 |
-
) # 20/4.5 or 12 without lora, 4 with lora
|
| 262 |
-
guidance_scale = gr.Slider(
|
| 263 |
-
label="Guidance scale", minimum=0.1, maximum=30.0, value=5.5, step=0.1
|
| 264 |
-
) # 5 without lora, 2 with lora
|
| 265 |
-
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
|
| 266 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 267 |
-
a_prompt = gr.Textbox(
|
| 268 |
-
label="Additional prompt",
|
| 269 |
-
value = "design-style interior designed (interior space), captured with a DSLR camera using f/10 aperture, 1/60 sec shutter speed, ISO 400, 20mm focal length, tungsten white balance, (sharp focus), professional photography, high-resolution, 8k, Pulitzer Prize-winning"
|
| 270 |
-
)
|
| 271 |
-
n_prompt = gr.Textbox(
|
| 272 |
-
label="Negative prompt",
|
| 273 |
-
value="EasyNegativeV2, fcNeg, (badhandv4:1.4), (worst quality, low quality, bad quality, normal quality:2.0), (bad hands, missing fingers, extra fingers:2.0)",
|
| 274 |
-
)
|
| 275 |
-
#############################################################################
|
| 276 |
-
# input text
|
| 277 |
-
with gr.Row():
|
| 278 |
-
gr.Text(label="Interior Design Style Examples", value="Eclectic, Maximalist, Bohemian, Scandinavian, Minimalist, Rustic, Modern Farmhouse, Contemporary, Luxury, Airbnb, Boho Chic, Midcentury Modern, Art Deco, Zen, Beach, Neoclassical, Industrial, Biophilic, Eco-friendly, Hollywood Glam, Parisian White, Saudi Prince Gold, French Country, Monster Energy Drink, Cyberpunk, Vaporwave, Baroque, etc.\n\nPro tip: add a color to customize it! You can also describe the furniture type.")
|
| 279 |
-
with gr.Column():
|
| 280 |
-
prompt = gr.Textbox(
|
| 281 |
-
label="Custom Prompt",
|
| 282 |
-
placeholder="boho chic",
|
| 283 |
-
)
|
| 284 |
-
with gr.Row(visible=True):
|
| 285 |
-
style_selection = gr.Radio(
|
| 286 |
-
show_label=True,
|
| 287 |
-
container=True,
|
| 288 |
-
interactive=True,
|
| 289 |
-
choices=STYLE_NAMES,
|
| 290 |
-
value="None",
|
| 291 |
-
label="Design Styles",
|
| 292 |
-
)
|
| 293 |
-
# input image
|
| 294 |
-
with gr.Row():
|
| 295 |
-
with gr.Column():
|
| 296 |
-
image = gr.Image(
|
| 297 |
-
label="Input",
|
| 298 |
-
sources=["upload"],
|
| 299 |
-
show_label=True,
|
| 300 |
-
mirror_webcam=True,
|
| 301 |
-
format="webp",
|
| 302 |
-
)
|
| 303 |
-
# run button
|
| 304 |
-
with gr.Column():
|
| 305 |
-
run_button = gr.Button(value="Use this one", size=["lg"], visible=False)
|
| 306 |
-
# output image
|
| 307 |
-
with gr.Column():
|
| 308 |
-
result = gr.Image(
|
| 309 |
-
label="Output",
|
| 310 |
-
interactive=False,
|
| 311 |
-
format="webp",
|
| 312 |
-
show_share_button= False,
|
| 313 |
-
)
|
| 314 |
-
# Use this image button
|
| 315 |
-
with gr.Column():
|
| 316 |
-
use_ai_button = gr.Button(value="Use this one", size=["lg"], visible=False)
|
| 317 |
-
config = [
|
| 318 |
-
image,
|
| 319 |
-
style_selection,
|
| 320 |
-
prompt,
|
| 321 |
-
a_prompt,
|
| 322 |
-
n_prompt,
|
| 323 |
-
num_images,
|
| 324 |
-
image_resolution,
|
| 325 |
-
preprocess_resolution,
|
| 326 |
-
num_steps,
|
| 327 |
-
guidance_scale,
|
| 328 |
-
seed,
|
| 329 |
-
]
|
| 330 |
-
|
| 331 |
-
with gr.Row():
|
| 332 |
-
helper_text = gr.Markdown("## Tap and hold (on mobile) to save the image.", visible=True)
|
| 333 |
-
|
| 334 |
-
# image processing
|
| 335 |
-
@gr.on(triggers=[image.upload, prompt.submit, run_button.click], inputs=config, outputs=result, show_progress="minimal")
|
| 336 |
-
def auto_process_image(image, style_selection, prompt, a_prompt, n_prompt, num_images, image_resolution, preprocess_resolution, num_steps, guidance_scale, seed, progress=gr.Progress(track_tqdm=True)):
|
| 337 |
-
return process_image(image, style_selection, prompt, a_prompt, n_prompt, num_images, image_resolution, preprocess_resolution, num_steps, guidance_scale, seed)
|
| 338 |
-
|
| 339 |
-
# AI Image Processing
|
| 340 |
-
@gr.on(triggers=[use_ai_button.click], inputs=config, outputs=result, show_progress="minimal")
|
| 341 |
-
def submit(image, style_selection, prompt, a_prompt, n_prompt, num_images, image_resolution, preprocess_resolution, num_steps, guidance_scale, seed, progress=gr.Progress(track_tqdm=True)):
|
| 342 |
-
return process_image(image, style_selection, prompt, a_prompt, n_prompt, num_images, image_resolution, preprocess_resolution, num_steps, guidance_scale, seed)
|
| 343 |
-
|
| 344 |
-
# Change input to result
|
| 345 |
-
@gr.on(triggers=[use_ai_button.click], inputs=None, outputs=image, show_progress="hidden")
|
| 346 |
-
def update_input():
|
| 347 |
-
try:
|
| 348 |
-
print("Updating image to AI Temp Image")
|
| 349 |
-
ai_temp_image = Image.open("temp_image.jpg")
|
| 350 |
-
return ai_temp_image
|
| 351 |
-
except FileNotFoundError:
|
| 352 |
-
print("No AI Image Available")
|
| 353 |
-
return None
|
| 354 |
-
|
| 355 |
-
# Turn off buttons when processing
|
| 356 |
-
@gr.on(triggers=[image.upload, use_ai_button.click, run_button.click], inputs=None, outputs=[run_button, use_ai_button], show_progress="hidden")
|
| 357 |
-
def turn_buttons_off():
|
| 358 |
-
return gr.update(visible=False), gr.update(visible=False)
|
| 359 |
-
|
| 360 |
-
# Turn on buttons when processing is complete
|
| 361 |
-
@gr.on(triggers=[result.change], inputs=None, outputs=[use_ai_button, run_button], show_progress="hidden")
|
| 362 |
-
def turn_buttons_on():
|
| 363 |
-
return gr.update(visible=True), gr.update(visible=True)
|
| 364 |
-
|
| 365 |
-
@spaces.GPU(duration=10)
|
| 366 |
-
@torch.inference_mode()
|
| 367 |
-
def process_image(
|
| 368 |
-
image,
|
| 369 |
-
style_selection,
|
| 370 |
-
prompt,
|
| 371 |
-
a_prompt,
|
| 372 |
-
n_prompt,
|
| 373 |
-
num_images,
|
| 374 |
-
image_resolution,
|
| 375 |
-
preprocess_resolution,
|
| 376 |
-
num_steps,
|
| 377 |
-
guidance_scale,
|
| 378 |
-
seed,
|
| 379 |
-
progress=gr.Progress(track_tqdm=True)
|
| 380 |
-
):
|
| 381 |
-
torch.cuda.synchronize()
|
| 382 |
-
preprocess_start = time.time()
|
| 383 |
-
print("processing image")
|
| 384 |
-
preprocessor.load("NormalBae")
|
| 385 |
-
# preprocessor.load("Canny") #20 steps, 9 guidance, 512, 512
|
| 386 |
-
|
| 387 |
-
global compiled
|
| 388 |
-
if not compiled:
|
| 389 |
-
print("Not Compiled")
|
| 390 |
-
compiled = True
|
| 391 |
-
|
| 392 |
-
seed = random.randint(0, MAX_SEED)
|
| 393 |
-
generator = torch.cuda.manual_seed(seed)
|
| 394 |
-
control_image = preprocessor(
|
| 395 |
-
image=image,
|
| 396 |
-
image_resolution=image_resolution,
|
| 397 |
-
detect_resolution=preprocess_resolution,
|
| 398 |
-
)
|
| 399 |
-
preprocess_time = time.time() - preprocess_start
|
| 400 |
-
if style_selection is not None or style_selection != "None":
|
| 401 |
-
prompt = "Photo from Pinterest of " + apply_style(style_selection) + " " + prompt + " " + a_prompt
|
| 402 |
-
else:
|
| 403 |
-
prompt=str(get_prompt(prompt, a_prompt))
|
| 404 |
-
negative_prompt=str(n_prompt)
|
| 405 |
-
print(prompt)
|
| 406 |
-
start = time.time()
|
| 407 |
-
results = pipe(
|
| 408 |
-
prompt=prompt,
|
| 409 |
-
negative_prompt=negative_prompt,
|
| 410 |
-
guidance_scale=guidance_scale,
|
| 411 |
-
num_images_per_prompt=num_images,
|
| 412 |
-
num_inference_steps=num_steps,
|
| 413 |
-
generator=generator,
|
| 414 |
-
image=control_image,
|
| 415 |
-
).images[0]
|
| 416 |
-
torch.cuda.synchronize()
|
| 417 |
-
torch.cuda.empty_cache()
|
| 418 |
-
print(f"\n-------------------------Preprocess done in: {preprocess_time:.2f} seconds-------------------------")
|
| 419 |
-
print(f"\n-------------------------Inference done in: {time.time() - start:.2f} seconds-------------------------")
|
| 420 |
-
|
| 421 |
-
# timestamp = int(time.time())
|
| 422 |
-
#if not os.path.exists("./outputs"):
|
| 423 |
-
# os.makedirs("./outputs")
|
| 424 |
-
# img_path = f"./{timestamp}.jpg"
|
| 425 |
-
# results_path = f"./{timestamp}_out_{prompt}.jpg"
|
| 426 |
-
# imageio.imsave(img_path, image)
|
| 427 |
-
# results.save(results_path)
|
| 428 |
-
results.save("temp_image.jpg")
|
| 429 |
-
|
| 430 |
-
# api.upload_file(
|
| 431 |
-
# path_or_fileobj=img_path,
|
| 432 |
-
# path_in_repo=img_path,
|
| 433 |
-
# repo_id="broyang/anime-ai-outputs",
|
| 434 |
-
# repo_type="dataset",
|
| 435 |
-
# token=API_KEY,
|
| 436 |
-
# run_as_future=True,
|
| 437 |
-
# )
|
| 438 |
-
# api.upload_file(
|
| 439 |
-
# path_or_fileobj=results_path,
|
| 440 |
-
# path_in_repo=results_path,
|
| 441 |
-
# repo_id="broyang/anime-ai-outputs",
|
| 442 |
-
# repo_type="dataset",
|
| 443 |
-
# token=API_KEY,
|
| 444 |
-
# run_as_future=True,
|
| 445 |
-
# )
|
| 446 |
-
|
| 447 |
-
return results
|
| 448 |
-
if prod:
|
| 449 |
-
demo.queue(max_size=20).launch(server_name="localhost", server_port=port)
|
| 450 |
-
else:
|
| 451 |
-
demo.queue(api_open=False).launch(show_api=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app/local_app.py
DELETED
|
@@ -1,455 +0,0 @@
|
|
| 1 |
-
prod = True
|
| 2 |
-
port = 8080
|
| 3 |
-
show_options = False
|
| 4 |
-
if prod:
|
| 5 |
-
port = 8081
|
| 6 |
-
# show_options = False
|
| 7 |
-
|
| 8 |
-
import os
|
| 9 |
-
import gc
|
| 10 |
-
import random
|
| 11 |
-
import time
|
| 12 |
-
import gradio as gr
|
| 13 |
-
import numpy as np
|
| 14 |
-
# import imageio
|
| 15 |
-
import torch
|
| 16 |
-
from PIL import Image
|
| 17 |
-
from diffusers import (
|
| 18 |
-
ControlNetModel,
|
| 19 |
-
DPMSolverMultistepScheduler,
|
| 20 |
-
StableDiffusionControlNetPipeline,
|
| 21 |
-
AutoencoderKL,
|
| 22 |
-
)
|
| 23 |
-
from diffusers.models.attention_processor import AttnProcessor2_0
|
| 24 |
-
from local_preprocess import Preprocessor
|
| 25 |
-
MAX_SEED = np.iinfo(np.int32).max
|
| 26 |
-
API_KEY = os.environ.get("API_KEY", None)
|
| 27 |
-
|
| 28 |
-
print("CUDA version:", torch.version.cuda)
|
| 29 |
-
print("loading pipe")
|
| 30 |
-
compiled = False
|
| 31 |
-
|
| 32 |
-
preprocessor = Preprocessor()
|
| 33 |
-
preprocessor.load("NormalBae")
|
| 34 |
-
|
| 35 |
-
if gr.NO_RELOAD:
|
| 36 |
-
# torch.cuda.max_memory_allocated(device="cuda")
|
| 37 |
-
|
| 38 |
-
# Controlnet Normal
|
| 39 |
-
model_id = "lllyasviel/control_v11p_sd15_normalbae"
|
| 40 |
-
print("initializing controlnet")
|
| 41 |
-
controlnet = ControlNetModel.from_pretrained(
|
| 42 |
-
model_id,
|
| 43 |
-
torch_dtype=torch.float16,
|
| 44 |
-
attn_implementation="flash_attention_2",
|
| 45 |
-
).to("cuda")
|
| 46 |
-
|
| 47 |
-
# Scheduler
|
| 48 |
-
scheduler = DPMSolverMultistepScheduler.from_pretrained(
|
| 49 |
-
"stabilityai/stable-diffusion-xl-base-1.0",
|
| 50 |
-
subfolder="scheduler",
|
| 51 |
-
use_karras_sigmas=True,
|
| 52 |
-
# final_sigmas_type="sigma_min",
|
| 53 |
-
algorithm_type="sde-dpmsolver++",
|
| 54 |
-
# prediction_type="epsilon",
|
| 55 |
-
# thresholding=False,
|
| 56 |
-
denoise_final=True,
|
| 57 |
-
device_map="cuda",
|
| 58 |
-
attn_implementation="flash_attention_2",
|
| 59 |
-
)
|
| 60 |
-
|
| 61 |
-
# Stable Diffusion Pipeline URL
|
| 62 |
-
# base_model_url = "https://huggingface.co/broyang/hentaidigitalart_v20/blob/main/realcartoon3d_v15.safetensors"
|
| 63 |
-
base_model_url = "https://huggingface.co/Lykon/AbsoluteReality/blob/main/AbsoluteReality_1.8.1_pruned.safetensors"
|
| 64 |
-
base_model_id = "Lykon/absolute-reality-1.81"
|
| 65 |
-
vae_url = "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/vae-ft-mse-840000-ema-pruned.safetensors"
|
| 66 |
-
|
| 67 |
-
vae = AutoencoderKL.from_single_file(vae_url, torch_dtype=torch.float16).to("cuda")
|
| 68 |
-
vae.to(memory_format=torch.channels_last)
|
| 69 |
-
|
| 70 |
-
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 71 |
-
base_model_id,
|
| 72 |
-
safety_checker=None,
|
| 73 |
-
controlnet=controlnet,
|
| 74 |
-
scheduler=scheduler,
|
| 75 |
-
vae=vae,
|
| 76 |
-
torch_dtype=torch.float16,
|
| 77 |
-
).to("cuda")
|
| 78 |
-
|
| 79 |
-
# pipe = StableDiffusionControlNetPipeline.from_single_file(
|
| 80 |
-
# base_model_url,
|
| 81 |
-
# controlnet=controlnet,
|
| 82 |
-
# scheduler=scheduler,
|
| 83 |
-
# vae=vae,
|
| 84 |
-
# torch_dtype=torch.float16,
|
| 85 |
-
# )
|
| 86 |
-
|
| 87 |
-
pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="EasyNegativeV2.safetensors", token="EasyNegativeV2",)
|
| 88 |
-
pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="badhandv4.pt", token="badhandv4")
|
| 89 |
-
pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="fcNeg-neg.pt", token="fcNeg-neg")
|
| 90 |
-
pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_Ahegao.pt", token="HDA_Ahegao")
|
| 91 |
-
pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_Bondage.pt", token="HDA_Bondage")
|
| 92 |
-
pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_pet_play.pt", token="HDA_pet_play")
|
| 93 |
-
pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_unconventional maid.pt", token="HDA_unconventional_maid")
|
| 94 |
-
pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_NakedHoodie.pt", token="HDA_NakedHoodie")
|
| 95 |
-
pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_NunDress.pt", token="HDA_NunDress")
|
| 96 |
-
pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_Shibari.pt", token="HDA_Shibari")
|
| 97 |
-
pipe.to("cuda")
|
| 98 |
-
|
| 99 |
-
# experimental speedup?
|
| 100 |
-
# pipe.compile()
|
| 101 |
-
# torch.cuda.empty_cache()
|
| 102 |
-
# gc.collect()
|
| 103 |
-
print("---------------Loaded controlnet pipeline---------------")
|
| 104 |
-
|
| 105 |
-
# @spaces.GPU(duration=12)
|
| 106 |
-
# pipe.enable_xformers_memory_efficient_attention()
|
| 107 |
-
# pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
| 108 |
-
# pipe.unet.set_attn_processor(AttnProcessor2_0())
|
| 109 |
-
torch.cuda.empty_cache()
|
| 110 |
-
gc.collect()
|
| 111 |
-
print("Model Compiled!")
|
| 112 |
-
|
| 113 |
-
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
| 114 |
-
if randomize_seed:
|
| 115 |
-
seed = random.randint(0, MAX_SEED)
|
| 116 |
-
return seed
|
| 117 |
-
|
| 118 |
-
def get_additional_prompt():
|
| 119 |
-
prompt = "hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed"
|
| 120 |
-
top = ["tank top", "blouse", "button up shirt", "sweater", "corset top"]
|
| 121 |
-
bottom = ["short skirt", "athletic shorts", "jean shorts", "pleated skirt", "short skirt", "leggings", "high-waisted shorts"]
|
| 122 |
-
accessory = ["knee-high boots", "gloves", "Thigh-high stockings", "Garter belt", "choker", "necklace", "headband", "headphones"]
|
| 123 |
-
return f"{prompt}, {random.choice(top)}, {random.choice(bottom)}, {random.choice(accessory)}, score_9"
|
| 124 |
-
# outfit = ["schoolgirl outfit", "playboy outfit", "red dress", "gala dress", "cheerleader outfit", "nurse outfit", "Kimono"]
|
| 125 |
-
|
| 126 |
-
def get_prompt(prompt, additional_prompt):
|
| 127 |
-
interior = "design-style interior designed (interior space), captured with a DSLR camera using f/10 aperture, 1/60 sec shutter speed, ISO 400, 20mm focal length, tungsten white balance, (sharp focus), professional photography, high-resolution, 8k, Pulitzer Prize-winning"
|
| 128 |
-
default = "hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed"
|
| 129 |
-
default2 = f"professional 3d model {prompt},octane render,highly detailed,volumetric,dramatic lighting,hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed"
|
| 130 |
-
randomize = get_additional_prompt()
|
| 131 |
-
# nude = "NSFW,((nude)),medium bare breasts,hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed"
|
| 132 |
-
# bodypaint = "((fully naked with no clothes)),nude naked seethroughxray,invisiblebodypaint,rating_newd,NSFW"
|
| 133 |
-
lab_girl = "hyperrealistic photography, extremely detailed, shy assistant wearing minidress boots and gloves, laboratory background, score_9, 1girl"
|
| 134 |
-
pet_play = "hyperrealistic photography, extremely detailed, playful, blush, glasses, collar, score_9, HDA_pet_play"
|
| 135 |
-
bondage = "hyperrealistic photography, extremely detailed, submissive, glasses, score_9, HDA_Bondage"
|
| 136 |
-
# ahegao = "((invisible clothing)), hyperrealistic photography,exposed vagina,sexy,nsfw,HDA_Ahegao"
|
| 137 |
-
ahegao2 = "(invisiblebodypaint),rating_newd,HDA_Ahegao"
|
| 138 |
-
athleisure = "hyperrealistic photography, extremely detailed, 1girl athlete, exhausted embarrassed sweaty,outdoors, ((athleisure clothing)), score_9"
|
| 139 |
-
atompunk = "((atompunk world)), hyperrealistic photography, extremely detailed, short hair, bodysuit, glasses, neon cyberpunk background, score_9"
|
| 140 |
-
maid = "hyperrealistic photography, extremely detailed, shy, blushing, score_9, pastel background, HDA_unconventional_maid"
|
| 141 |
-
nundress = "hyperrealistic photography, extremely detailed, shy, blushing, fantasy background, score_9, HDA_NunDress"
|
| 142 |
-
naked_hoodie = "hyperrealistic photography, extremely detailed, medium hair, cityscape, (neon lights), score_9, HDA_NakedHoodie"
|
| 143 |
-
abg = "(1girl, asian body covered in words, words on body, tattoos of (words) on body),(masterpiece, best quality),medium breasts,(intricate details),unity 8k wallpaper,ultra detailed,(pastel colors),beautiful and aesthetic,see-through (clothes),detailed,solo"
|
| 144 |
-
# shibari = "extremely detailed, hyperrealistic photography, earrings, blushing, lace choker, tattoo, medium hair, score_9, HDA_Shibari"
|
| 145 |
-
shibari2 = "octane render, highly detailed, volumetric, HDA_Shibari"
|
| 146 |
-
|
| 147 |
-
if prompt == "":
|
| 148 |
-
girls = [randomize, pet_play, bondage, lab_girl, athleisure, atompunk, maid, nundress, naked_hoodie, abg, shibari2, ahegao2]
|
| 149 |
-
prompts_nsfw = [abg, shibari2, ahegao2]
|
| 150 |
-
prompt = f"{random.choice(girls)}"
|
| 151 |
-
prompt = f"boho chic"
|
| 152 |
-
# print(f"-------------{preset}-------------")
|
| 153 |
-
else:
|
| 154 |
-
prompt = f"Photo from Pinterest of {prompt} {interior}"
|
| 155 |
-
# prompt = default2
|
| 156 |
-
return f"{prompt} f{additional_prompt}"
|
| 157 |
-
|
| 158 |
-
style_list = [
|
| 159 |
-
{
|
| 160 |
-
"name": "None",
|
| 161 |
-
"prompt": ""
|
| 162 |
-
},
|
| 163 |
-
{
|
| 164 |
-
"name": "Minimalistic",
|
| 165 |
-
"prompt": "Minimalistic"
|
| 166 |
-
},
|
| 167 |
-
{
|
| 168 |
-
"name": "Boho Chic",
|
| 169 |
-
"prompt": "boho chic"
|
| 170 |
-
},
|
| 171 |
-
{
|
| 172 |
-
"name": "Saudi Prince Gold",
|
| 173 |
-
"prompt": "saudi prince gold",
|
| 174 |
-
},
|
| 175 |
-
{
|
| 176 |
-
"name": "Modern Farmhouse",
|
| 177 |
-
"prompt": "modern farmhouse",
|
| 178 |
-
},
|
| 179 |
-
{
|
| 180 |
-
"name": "Neoclassical",
|
| 181 |
-
"prompt": "Neoclassical",
|
| 182 |
-
},
|
| 183 |
-
{
|
| 184 |
-
"name": "Eclectic",
|
| 185 |
-
"prompt": "Eclectic",
|
| 186 |
-
},
|
| 187 |
-
{
|
| 188 |
-
"name": "Parisian White",
|
| 189 |
-
"prompt": "Parisian White",
|
| 190 |
-
},
|
| 191 |
-
{
|
| 192 |
-
"name": "Hollywood Glam",
|
| 193 |
-
"prompt": "Hollywood Glam",
|
| 194 |
-
},
|
| 195 |
-
{
|
| 196 |
-
"name": "Scandinavian",
|
| 197 |
-
"prompt": "Scandinavian",
|
| 198 |
-
},
|
| 199 |
-
{
|
| 200 |
-
"name": "Japanese",
|
| 201 |
-
"prompt": "Japanese",
|
| 202 |
-
},
|
| 203 |
-
{
|
| 204 |
-
"name": "Texas Cowboy",
|
| 205 |
-
"prompt": "Texas Cowboy",
|
| 206 |
-
},
|
| 207 |
-
{
|
| 208 |
-
"name": "Midcentury Modern",
|
| 209 |
-
"prompt": "Midcentury Modern",
|
| 210 |
-
},
|
| 211 |
-
{
|
| 212 |
-
"name": "Beach",
|
| 213 |
-
"prompt": "Beach",
|
| 214 |
-
},
|
| 215 |
-
]
|
| 216 |
-
|
| 217 |
-
styles = {k["name"]: (k["prompt"]) for k in style_list}
|
| 218 |
-
STYLE_NAMES = list(styles.keys())
|
| 219 |
-
|
| 220 |
-
def apply_style(style_name):
|
| 221 |
-
if style_name in styles:
|
| 222 |
-
p = styles.get(style_name, "boho chic")
|
| 223 |
-
return p
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
css = """
|
| 227 |
-
h1 {
|
| 228 |
-
text-align: center;
|
| 229 |
-
display:block;
|
| 230 |
-
}
|
| 231 |
-
h2 {
|
| 232 |
-
text-align: center;
|
| 233 |
-
display:block;
|
| 234 |
-
}
|
| 235 |
-
h3 {
|
| 236 |
-
text-align: center;
|
| 237 |
-
display:block;
|
| 238 |
-
}
|
| 239 |
-
.gradio-container{max-width: 1200px !important}
|
| 240 |
-
footer {visibility: hidden}
|
| 241 |
-
"""
|
| 242 |
-
with gr.Blocks(theme="bethecloud/storj_theme", css=css) as demo:
|
| 243 |
-
#############################################################################
|
| 244 |
-
with gr.Row():
|
| 245 |
-
with gr.Accordion("Advanced options", open=show_options, visible=show_options):
|
| 246 |
-
num_images = gr.Slider(
|
| 247 |
-
label="Images", minimum=1, maximum=4, value=1, step=1
|
| 248 |
-
)
|
| 249 |
-
image_resolution = gr.Slider(
|
| 250 |
-
label="Image resolution",
|
| 251 |
-
minimum=256,
|
| 252 |
-
maximum=1024,
|
| 253 |
-
value=512,
|
| 254 |
-
step=256,
|
| 255 |
-
)
|
| 256 |
-
preprocess_resolution = gr.Slider(
|
| 257 |
-
label="Preprocess resolution",
|
| 258 |
-
minimum=128,
|
| 259 |
-
maximum=1024,
|
| 260 |
-
value=512,
|
| 261 |
-
step=1,
|
| 262 |
-
)
|
| 263 |
-
num_steps = gr.Slider(
|
| 264 |
-
label="Number of steps", minimum=1, maximum=100, value=15, step=1
|
| 265 |
-
) # 20/4.5 or 12 without lora, 4 with lora
|
| 266 |
-
guidance_scale = gr.Slider(
|
| 267 |
-
label="Guidance scale", minimum=0.1, maximum=30.0, value=5.5, step=0.1
|
| 268 |
-
) # 5 without lora, 2 with lora
|
| 269 |
-
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
|
| 270 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 271 |
-
a_prompt = gr.Textbox(
|
| 272 |
-
label="Additional prompt",
|
| 273 |
-
value = "design-style interior designed (interior space), captured with a DSLR camera using f/10 aperture, 1/60 sec shutter speed, ISO 400, 20mm focal length, tungsten white balance, (sharp focus), professional photography, high-resolution, 8k, Pulitzer Prize-winning"
|
| 274 |
-
)
|
| 275 |
-
n_prompt = gr.Textbox(
|
| 276 |
-
label="Negative prompt",
|
| 277 |
-
value="EasyNegativeV2, fcNeg, (badhandv4:1.4), (worst quality, low quality, bad quality, normal quality:2.0), (bad hands, missing fingers, extra fingers:2.0)",
|
| 278 |
-
)
|
| 279 |
-
#############################################################################
|
| 280 |
-
# input text
|
| 281 |
-
with gr.Row():
|
| 282 |
-
gr.Text(label="Interior Design Style Examples", value="Eclectic, Maximalist, Bohemian, Scandinavian, Minimalist, Rustic, Modern Farmhouse, Contemporary, Luxury, Airbnb, Boho Chic, Midcentury Modern, Art Deco, Zen, Beach, Neoclassical, Industrial, Biophilic, Eco-friendly, Hollywood Glam, Parisian White, Saudi Prince Gold, French Country, Monster Energy Drink, Cyberpunk, Vaporwave, Baroque, etc.\n\nPro tip: add a color to customize it! You can also describe the furniture type.")
|
| 283 |
-
with gr.Column():
|
| 284 |
-
prompt = gr.Textbox(
|
| 285 |
-
label="Custom Prompt",
|
| 286 |
-
placeholder="boho chic",
|
| 287 |
-
)
|
| 288 |
-
with gr.Row(visible=True):
|
| 289 |
-
style_selection = gr.Radio(
|
| 290 |
-
show_label=True,
|
| 291 |
-
container=True,
|
| 292 |
-
interactive=True,
|
| 293 |
-
choices=STYLE_NAMES,
|
| 294 |
-
value="None",
|
| 295 |
-
label="Design Styles",
|
| 296 |
-
)
|
| 297 |
-
# input image
|
| 298 |
-
with gr.Row():
|
| 299 |
-
with gr.Column():
|
| 300 |
-
image = gr.Image(
|
| 301 |
-
label="Input",
|
| 302 |
-
sources=["upload"],
|
| 303 |
-
show_label=True,
|
| 304 |
-
mirror_webcam=True,
|
| 305 |
-
format="webp",
|
| 306 |
-
)
|
| 307 |
-
# run button
|
| 308 |
-
with gr.Column():
|
| 309 |
-
run_button = gr.Button(value="Use this one", size=["lg"], visible=False)
|
| 310 |
-
# output image
|
| 311 |
-
with gr.Column():
|
| 312 |
-
result = gr.Image(
|
| 313 |
-
label="Output",
|
| 314 |
-
interactive=False,
|
| 315 |
-
format="webp",
|
| 316 |
-
show_share_button= False,
|
| 317 |
-
)
|
| 318 |
-
# Use this image button
|
| 319 |
-
with gr.Column():
|
| 320 |
-
use_ai_button = gr.Button(value="Use this one", size=["lg"], visible=False)
|
| 321 |
-
config = [
|
| 322 |
-
image,
|
| 323 |
-
style_selection,
|
| 324 |
-
prompt,
|
| 325 |
-
a_prompt,
|
| 326 |
-
n_prompt,
|
| 327 |
-
num_images,
|
| 328 |
-
image_resolution,
|
| 329 |
-
preprocess_resolution,
|
| 330 |
-
num_steps,
|
| 331 |
-
guidance_scale,
|
| 332 |
-
seed,
|
| 333 |
-
]
|
| 334 |
-
|
| 335 |
-
with gr.Row():
|
| 336 |
-
helper_text = gr.Markdown("## Tap and hold (on mobile) to save the image.", visible=True)
|
| 337 |
-
|
| 338 |
-
# image processing
|
| 339 |
-
@gr.on(triggers=[image.upload, prompt.submit, run_button.click], inputs=config, outputs=result, show_progress="minimal")
|
| 340 |
-
def auto_process_image(image, style_selection, prompt, a_prompt, n_prompt, num_images, image_resolution, preprocess_resolution, num_steps, guidance_scale, seed, progress=gr.Progress(track_tqdm=True)):
|
| 341 |
-
return process_image(image, style_selection, prompt, a_prompt, n_prompt, num_images, image_resolution, preprocess_resolution, num_steps, guidance_scale, seed)
|
| 342 |
-
|
| 343 |
-
# AI Image Processing
|
| 344 |
-
@gr.on(triggers=[use_ai_button.click], inputs=config, outputs=result, show_progress="minimal")
|
| 345 |
-
def submit(image, style_selection, prompt, a_prompt, n_prompt, num_images, image_resolution, preprocess_resolution, num_steps, guidance_scale, seed, progress=gr.Progress(track_tqdm=True)):
|
| 346 |
-
return process_image(image, style_selection, prompt, a_prompt, n_prompt, num_images, image_resolution, preprocess_resolution, num_steps, guidance_scale, seed)
|
| 347 |
-
|
| 348 |
-
# Change input to result
|
| 349 |
-
@gr.on(triggers=[use_ai_button.click], inputs=None, outputs=image, show_progress="hidden")
|
| 350 |
-
def update_input():
|
| 351 |
-
try:
|
| 352 |
-
print("Updating image to AI Temp Image")
|
| 353 |
-
ai_temp_image = Image.open("temp_image.jpg")
|
| 354 |
-
return ai_temp_image
|
| 355 |
-
except FileNotFoundError:
|
| 356 |
-
print("No AI Image Available")
|
| 357 |
-
return None
|
| 358 |
-
|
| 359 |
-
# Turn off buttons when processing
|
| 360 |
-
@gr.on(triggers=[image.upload, use_ai_button.click, run_button.click], inputs=None, outputs=[run_button, use_ai_button], show_progress="hidden")
|
| 361 |
-
def turn_buttons_off():
|
| 362 |
-
return gr.update(visible=False), gr.update(visible=False)
|
| 363 |
-
|
| 364 |
-
# Turn on buttons when processing is complete
|
| 365 |
-
@gr.on(triggers=[result.change], inputs=None, outputs=[use_ai_button, run_button], show_progress="hidden")
|
| 366 |
-
def turn_buttons_on():
|
| 367 |
-
return gr.update(visible=True), gr.update(visible=True)
|
| 368 |
-
|
| 369 |
-
# @spaces.GPU(duration=12)
|
| 370 |
-
@torch.inference_mode()
|
| 371 |
-
def process_image(
|
| 372 |
-
image,
|
| 373 |
-
style_selection,
|
| 374 |
-
prompt,
|
| 375 |
-
a_prompt,
|
| 376 |
-
n_prompt,
|
| 377 |
-
num_images,
|
| 378 |
-
image_resolution,
|
| 379 |
-
preprocess_resolution,
|
| 380 |
-
num_steps,
|
| 381 |
-
guidance_scale,
|
| 382 |
-
seed,
|
| 383 |
-
progress=gr.Progress(track_tqdm=True)
|
| 384 |
-
):
|
| 385 |
-
torch.cuda.synchronize()
|
| 386 |
-
preprocess_start = time.time()
|
| 387 |
-
print("processing image")
|
| 388 |
-
preprocessor.load("NormalBae")
|
| 389 |
-
# preprocessor.load("Canny") #20 steps, 9 guidance, 512, 512
|
| 390 |
-
|
| 391 |
-
global compiled
|
| 392 |
-
if not compiled:
|
| 393 |
-
print("Not Compiled")
|
| 394 |
-
compiled = True
|
| 395 |
-
|
| 396 |
-
seed = random.randint(0, MAX_SEED)
|
| 397 |
-
generator = torch.cuda.manual_seed(seed)
|
| 398 |
-
control_image = preprocessor(
|
| 399 |
-
image=image,
|
| 400 |
-
image_resolution=image_resolution,
|
| 401 |
-
detect_resolution=preprocess_resolution,
|
| 402 |
-
)
|
| 403 |
-
preprocess_time = time.time() - preprocess_start
|
| 404 |
-
if style_selection is not None or style_selection != "None":
|
| 405 |
-
prompt = "Photo from Pinterest of " + apply_style(style_selection) + " " + prompt + " " + a_prompt
|
| 406 |
-
else:
|
| 407 |
-
prompt=str(get_prompt(prompt, a_prompt))
|
| 408 |
-
negative_prompt=str(n_prompt)
|
| 409 |
-
print(prompt)
|
| 410 |
-
start = time.time()
|
| 411 |
-
results = pipe(
|
| 412 |
-
prompt=prompt,
|
| 413 |
-
negative_prompt=negative_prompt,
|
| 414 |
-
guidance_scale=guidance_scale,
|
| 415 |
-
num_images_per_prompt=num_images,
|
| 416 |
-
num_inference_steps=num_steps,
|
| 417 |
-
generator=generator,
|
| 418 |
-
image=control_image,
|
| 419 |
-
).images[0]
|
| 420 |
-
torch.cuda.synchronize()
|
| 421 |
-
torch.cuda.empty_cache()
|
| 422 |
-
print(f"\n-------------------------Preprocess done in: {preprocess_time:.2f} seconds-------------------------")
|
| 423 |
-
print(f"\n-------------------------Inference done in: {time.time() - start:.2f} seconds-------------------------")
|
| 424 |
-
|
| 425 |
-
# timestamp = int(time.time())
|
| 426 |
-
#if not os.path.exists("./outputs"):
|
| 427 |
-
# os.makedirs("./outputs")
|
| 428 |
-
# img_path = f"./{timestamp}.jpg"
|
| 429 |
-
# results_path = f"./{timestamp}_out_{prompt}.jpg"
|
| 430 |
-
# imageio.imsave(img_path, image)
|
| 431 |
-
# results.save(results_path)
|
| 432 |
-
results.save("temp_image.jpg")
|
| 433 |
-
|
| 434 |
-
# api.upload_file(
|
| 435 |
-
# path_or_fileobj=img_path,
|
| 436 |
-
# path_in_repo=img_path,
|
| 437 |
-
# repo_id="broyang/anime-ai-outputs",
|
| 438 |
-
# repo_type="dataset",
|
| 439 |
-
# token=API_KEY,
|
| 440 |
-
# run_as_future=True,
|
| 441 |
-
# )
|
| 442 |
-
# api.upload_file(
|
| 443 |
-
# path_or_fileobj=results_path,
|
| 444 |
-
# path_in_repo=results_path,
|
| 445 |
-
# repo_id="broyang/anime-ai-outputs",
|
| 446 |
-
# repo_type="dataset",
|
| 447 |
-
# token=API_KEY,
|
| 448 |
-
# run_as_future=True,
|
| 449 |
-
# )
|
| 450 |
-
|
| 451 |
-
return results
|
| 452 |
-
if prod:
|
| 453 |
-
demo.queue(max_size=20).launch(server_name="localhost", server_port=port)
|
| 454 |
-
else:
|
| 455 |
-
demo.queue(api_open=False).launch(show_api=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app/local_preprocess.py
DELETED
|
@@ -1,69 +0,0 @@
|
|
| 1 |
-
# import numpy as np
|
| 2 |
-
import PIL.Image
|
| 3 |
-
import torch
|
| 4 |
-
import gc
|
| 5 |
-
# from controlnet_aux_local import NormalBaeDetector#, CannyDetector
|
| 6 |
-
from controlnet_aux import NormalBaeDetector
|
| 7 |
-
|
| 8 |
-
# from controlnet_aux.util import HWC3
|
| 9 |
-
# import cv2
|
| 10 |
-
# from cv_utils import resize_image
|
| 11 |
-
|
| 12 |
-
class Preprocessor:
|
| 13 |
-
MODEL_ID = "lllyasviel/Annotators"
|
| 14 |
-
|
| 15 |
-
# def resize_image(input_image, resolution, interpolation=None):
|
| 16 |
-
# H, W, C = input_image.shape
|
| 17 |
-
# H = float(H)
|
| 18 |
-
# W = float(W)
|
| 19 |
-
# k = float(resolution) / max(H, W)
|
| 20 |
-
# H *= k
|
| 21 |
-
# W *= k
|
| 22 |
-
# H = int(np.round(H / 64.0)) * 64
|
| 23 |
-
# W = int(np.round(W / 64.0)) * 64
|
| 24 |
-
# if interpolation is None:
|
| 25 |
-
# interpolation = cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA
|
| 26 |
-
# img = cv2.resize(input_image, (W, H), interpolation=interpolation)
|
| 27 |
-
# return img
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
def __init__(self):
|
| 31 |
-
self.model = None
|
| 32 |
-
self.name = ""
|
| 33 |
-
|
| 34 |
-
def load(self, name: str) -> None:
|
| 35 |
-
if name == self.name:
|
| 36 |
-
return
|
| 37 |
-
elif name == "NormalBae":
|
| 38 |
-
print("Loading NormalBae")
|
| 39 |
-
self.model = NormalBaeDetector.from_pretrained(self.MODEL_ID).to("cuda")
|
| 40 |
-
# elif name == "Canny":
|
| 41 |
-
# self.model = CannyDetector()
|
| 42 |
-
else:
|
| 43 |
-
raise ValueError
|
| 44 |
-
torch.cuda.empty_cache()
|
| 45 |
-
gc.collect()
|
| 46 |
-
|
| 47 |
-
self.name = name
|
| 48 |
-
|
| 49 |
-
def __call__(self, image: PIL.Image.Image, **kwargs) -> PIL.Image.Image:
|
| 50 |
-
# if self.name == "Canny":
|
| 51 |
-
# if "detect_resolution" in kwargs:
|
| 52 |
-
# detect_resolution = kwargs.pop("detect_resolution")
|
| 53 |
-
# image = np.array(image)
|
| 54 |
-
# image = HWC3(image)
|
| 55 |
-
# image = resize_image(image, resolution=detect_resolution)
|
| 56 |
-
# image = self.model(image, **kwargs)
|
| 57 |
-
# return PIL.Image.fromarray(image)
|
| 58 |
-
# elif self.name == "Midas":
|
| 59 |
-
# detect_resolution = kwargs.pop("detect_resolution", 512)
|
| 60 |
-
# image_resolution = kwargs.pop("image_resolution", 512)
|
| 61 |
-
# image = np.array(image)
|
| 62 |
-
# image = HWC3(image)
|
| 63 |
-
# image = resize_image(image, resolution=detect_resolution)
|
| 64 |
-
# image = self.model(image, **kwargs)
|
| 65 |
-
# image = HWC3(image)
|
| 66 |
-
# image = resize_image(image, resolution=image_resolution)
|
| 67 |
-
# return PIL.Image.fromarray(image)
|
| 68 |
-
# else:
|
| 69 |
-
return self.model(image, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app/preprocess.py
DELETED
|
@@ -1,67 +0,0 @@
|
|
| 1 |
-
# import numpy as np
|
| 2 |
-
import PIL.Image
|
| 3 |
-
# import torch
|
| 4 |
-
from controlnet_aux import NormalBaeDetector#, CannyDetector
|
| 5 |
-
|
| 6 |
-
# from controlnet_aux.util import HWC3
|
| 7 |
-
# import cv2
|
| 8 |
-
# from cv_utils import resize_image
|
| 9 |
-
|
| 10 |
-
class Preprocessor:
|
| 11 |
-
MODEL_ID = "lllyasviel/Annotators"
|
| 12 |
-
|
| 13 |
-
# def resize_image(input_image, resolution, interpolation=None):
|
| 14 |
-
# H, W, C = input_image.shape
|
| 15 |
-
# H = float(H)
|
| 16 |
-
# W = float(W)
|
| 17 |
-
# k = float(resolution) / max(H, W)
|
| 18 |
-
# H *= k
|
| 19 |
-
# W *= k
|
| 20 |
-
# H = int(np.round(H / 64.0)) * 64
|
| 21 |
-
# W = int(np.round(W / 64.0)) * 64
|
| 22 |
-
# if interpolation is None:
|
| 23 |
-
# interpolation = cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA
|
| 24 |
-
# img = cv2.resize(input_image, (W, H), interpolation=interpolation)
|
| 25 |
-
# return img
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
def __init__(self):
|
| 29 |
-
self.model = None
|
| 30 |
-
self.name = ""
|
| 31 |
-
|
| 32 |
-
def load(self, name: str) -> None:
|
| 33 |
-
if name == self.name:
|
| 34 |
-
return
|
| 35 |
-
elif name == "NormalBae":
|
| 36 |
-
print("Loading NormalBae")
|
| 37 |
-
self.model = NormalBaeDetector.from_pretrained(self.MODEL_ID).to("cuda")
|
| 38 |
-
# elif name == "Canny":
|
| 39 |
-
# self.model = CannyDetector()
|
| 40 |
-
else:
|
| 41 |
-
raise ValueError
|
| 42 |
-
# torch.cuda.empty_cache()
|
| 43 |
-
# gc.collect()
|
| 44 |
-
|
| 45 |
-
self.name = name
|
| 46 |
-
|
| 47 |
-
def __call__(self, image: PIL.Image.Image, **kwargs) -> PIL.Image.Image:
|
| 48 |
-
# if self.name == "Canny":
|
| 49 |
-
# if "detect_resolution" in kwargs:
|
| 50 |
-
# detect_resolution = kwargs.pop("detect_resolution")
|
| 51 |
-
# image = np.array(image)
|
| 52 |
-
# image = HWC3(image)
|
| 53 |
-
# image = resize_image(image, resolution=detect_resolution)
|
| 54 |
-
# image = self.model(image, **kwargs)
|
| 55 |
-
# return PIL.Image.fromarray(image)
|
| 56 |
-
# elif self.name == "Midas":
|
| 57 |
-
# detect_resolution = kwargs.pop("detect_resolution", 512)
|
| 58 |
-
# image_resolution = kwargs.pop("image_resolution", 512)
|
| 59 |
-
# image = np.array(image)
|
| 60 |
-
# image = HWC3(image)
|
| 61 |
-
# image = resize_image(image, resolution=detect_resolution)
|
| 62 |
-
# image = self.model(image, **kwargs)
|
| 63 |
-
# image = HWC3(image)
|
| 64 |
-
# image = resize_image(image, resolution=image_resolution)
|
| 65 |
-
# return PIL.Image.fromarray(image)
|
| 66 |
-
# else:
|
| 67 |
-
return self.model(image, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app/requirements.txt
DELETED
|
@@ -1,12 +0,0 @@
|
|
| 1 |
-
torch
|
| 2 |
-
torchvision
|
| 3 |
-
diffusers
|
| 4 |
-
einops
|
| 5 |
-
huggingface-hub
|
| 6 |
-
mediapipe
|
| 7 |
-
opencv-python-headless
|
| 8 |
-
safetensors
|
| 9 |
-
transformers
|
| 10 |
-
xformers
|
| 11 |
-
accelerate
|
| 12 |
-
imageio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app/win.requirements.txt
DELETED
|
@@ -1,17 +0,0 @@
|
|
| 1 |
-
torch
|
| 2 |
-
torchvision
|
| 3 |
-
torchaudio
|
| 4 |
-
--index-url https://download.pytorch.org/whl/cu121
|
| 5 |
-
|
| 6 |
-
diffusers
|
| 7 |
-
einops
|
| 8 |
-
gradio
|
| 9 |
-
gradio-client
|
| 10 |
-
mediapipe
|
| 11 |
-
opencv-python-headless
|
| 12 |
-
safetensors
|
| 13 |
-
transformers
|
| 14 |
-
xformers
|
| 15 |
-
accelerate
|
| 16 |
-
imageio
|
| 17 |
-
controlnet_aux
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
controlnet_aux/canny/__pycache__/__init__.cpython-310.pyc
DELETED
|
Binary file (1.29 kB)
|
|
|
controlnet_aux/dwpose/__pycache__/__init__.cpython-310.pyc
DELETED
|
Binary file (2.61 kB)
|
|
|
controlnet_aux/dwpose/__pycache__/util.cpython-310.pyc
DELETED
|
Binary file (7.78 kB)
|
|
|
controlnet_aux/dwpose/__pycache__/wholebody.cpython-310.pyc
DELETED
|
Binary file (3.59 kB)
|
|
|
controlnet_aux/hed/__pycache__/__init__.cpython-310.pyc
DELETED
|
Binary file (5.05 kB)
|
|
|
controlnet_aux/leres/__pycache__/__init__.cpython-310.pyc
DELETED
|
Binary file (3.32 kB)
|
|
|
controlnet_aux/leres/leres/__pycache__/Resnet.cpython-310.pyc
DELETED
|
Binary file (5.55 kB)
|
|
|
controlnet_aux/leres/leres/__pycache__/Resnext_torch.cpython-310.pyc
DELETED
|
Binary file (5.83 kB)
|
|
|
controlnet_aux/leres/leres/__pycache__/__init__.cpython-310.pyc
DELETED
|
Binary file (178 Bytes)
|
|
|
controlnet_aux/leres/leres/__pycache__/depthmap.cpython-310.pyc
DELETED
|
Binary file (11.7 kB)
|
|
|
controlnet_aux/leres/leres/__pycache__/multi_depth_model_woauxi.cpython-310.pyc
DELETED
|
Binary file (1.71 kB)
|
|
|
controlnet_aux/leres/leres/__pycache__/net_tools.cpython-310.pyc
DELETED
|
Binary file (1.89 kB)
|
|
|
controlnet_aux/leres/leres/__pycache__/network_auxi.cpython-310.pyc
DELETED
|
Binary file (9.82 kB)
|
|
|
controlnet_aux/leres/pix2pix/__pycache__/__init__.cpython-310.pyc
DELETED
|
Binary file (180 Bytes)
|
|
|
controlnet_aux/leres/pix2pix/models/__pycache__/__init__.cpython-310.pyc
DELETED
|
Binary file (3.3 kB)
|
|
|
controlnet_aux/leres/pix2pix/models/__pycache__/base_model.cpython-310.pyc
DELETED
|
Binary file (10.3 kB)
|
|
|
controlnet_aux/leres/pix2pix/models/__pycache__/base_model_hg.cpython-310.pyc
DELETED
|
Binary file (2.66 kB)
|
|
|
controlnet_aux/leres/pix2pix/models/__pycache__/networks.cpython-310.pyc
DELETED
|
Binary file (23.5 kB)
|
|
|
controlnet_aux/leres/pix2pix/models/__pycache__/pix2pix4depth_model.cpython-310.pyc
DELETED
|
Binary file (5.56 kB)
|
|
|
controlnet_aux/leres/pix2pix/options/__pycache__/__init__.cpython-310.pyc
DELETED
|
Binary file (329 Bytes)
|
|
|
controlnet_aux/leres/pix2pix/options/__pycache__/base_options.cpython-310.pyc
DELETED
|
Binary file (7.2 kB)
|
|
|
controlnet_aux/leres/pix2pix/options/__pycache__/test_options.cpython-310.pyc
DELETED
|
Binary file (1.14 kB)
|
|
|
controlnet_aux/leres/pix2pix/util/__pycache__/__init__.cpython-310.pyc
DELETED
|
Binary file (273 Bytes)
|
|
|
controlnet_aux/leres/pix2pix/util/__pycache__/util.cpython-310.pyc
DELETED
|
Binary file (3.02 kB)
|
|
|
controlnet_aux/lineart/__pycache__/__init__.cpython-310.pyc
DELETED
|
Binary file (4.75 kB)
|
|
|
controlnet_aux/lineart_anime/__pycache__/__init__.cpython-310.pyc
DELETED
|
Binary file (6.7 kB)
|
|
|
controlnet_aux/mediapipe_face/__pycache__/__init__.cpython-310.pyc
DELETED
|
Binary file (1.82 kB)
|
|
|
controlnet_aux/mediapipe_face/__pycache__/mediapipe_face_common.cpython-310.pyc
DELETED
|
Binary file (4.66 kB)
|
|
|
controlnet_aux/midas/__pycache__/__init__.cpython-310.pyc
DELETED
|
Binary file (2.94 kB)
|
|
|
controlnet_aux/midas/__pycache__/api.cpython-310.pyc
DELETED
|
Binary file (3.72 kB)
|
|
|
controlnet_aux/midas/__pycache__/utils.cpython-310.pyc
DELETED
|
Binary file (4.11 kB)
|
|
|
controlnet_aux/midas/midas/__pycache__/__init__.cpython-310.pyc
DELETED
|
Binary file (178 Bytes)
|
|
|
controlnet_aux/midas/midas/__pycache__/base_model.cpython-310.pyc
DELETED
|
Binary file (706 Bytes)
|
|
|
controlnet_aux/midas/midas/__pycache__/blocks.cpython-310.pyc
DELETED
|
Binary file (7.23 kB)
|
|
|
controlnet_aux/midas/midas/__pycache__/dpt_depth.cpython-310.pyc
DELETED
|
Binary file (2.93 kB)
|
|
|
controlnet_aux/midas/midas/__pycache__/midas_net.cpython-310.pyc
DELETED
|
Binary file (2.61 kB)
|
|
|
controlnet_aux/midas/midas/__pycache__/midas_net_custom.cpython-310.pyc
DELETED
|
Binary file (3.73 kB)
|
|
|
controlnet_aux/midas/midas/__pycache__/transforms.cpython-310.pyc
DELETED
|
Binary file (5.69 kB)
|
|
|
controlnet_aux/midas/midas/__pycache__/vit.cpython-310.pyc
DELETED
|
Binary file (9.38 kB)
|
|
|
controlnet_aux/mlsd/__pycache__/__init__.cpython-310.pyc
DELETED
|
Binary file (2.91 kB)
|
|
|
controlnet_aux/mlsd/__pycache__/utils.cpython-310.pyc
DELETED
|
Binary file (12.3 kB)
|
|
|