Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
ce22ab0
1
Parent(s):
105ac9e
cleanup
Browse files- .gitignore +2 -1
- Dockerfile +2 -2
- anime_app.py +14 -9
- profiler.py +0 -381
.gitignore
CHANGED
|
@@ -5,4 +5,5 @@ anime_app_local.py
|
|
| 5 |
*.jpg
|
| 6 |
*.png
|
| 7 |
*.pyc
|
| 8 |
-
client.py
|
|
|
|
|
|
| 5 |
*.jpg
|
| 6 |
*.png
|
| 7 |
*.pyc
|
| 8 |
+
client.py
|
| 9 |
+
outputs/*
|
Dockerfile
CHANGED
|
@@ -33,8 +33,8 @@ ENV HOME=/home/user \
|
|
| 33 |
|
| 34 |
RUN pip3 install --no-cache-dir --upgrade -r /code/requirements.txt
|
| 35 |
|
| 36 |
-
RUN apt-get install -y nvidia-340
|
| 37 |
-
RUN nvidia-smi
|
| 38 |
|
| 39 |
# Set the working directory to the user's home directory
|
| 40 |
WORKDIR $HOME/app
|
|
|
|
| 33 |
|
| 34 |
RUN pip3 install --no-cache-dir --upgrade -r /code/requirements.txt
|
| 35 |
|
| 36 |
+
#RUN apt-get install -y nvidia-340
|
| 37 |
+
#RUN nvidia-smi
|
| 38 |
|
| 39 |
# Set the working directory to the user's home directory
|
| 40 |
WORKDIR $HOME/app
|
anime_app.py
CHANGED
|
@@ -1,6 +1,8 @@
|
|
| 1 |
prod = True
|
|
|
|
| 2 |
show_options = True
|
| 3 |
if prod:
|
|
|
|
| 4 |
show_options = False
|
| 5 |
import os
|
| 6 |
import gc
|
|
@@ -8,6 +10,7 @@ import random
|
|
| 8 |
import time
|
| 9 |
import gradio as gr
|
| 10 |
import spaces
|
|
|
|
| 11 |
import imageio
|
| 12 |
from huggingface_hub import HfApi
|
| 13 |
import torch
|
|
@@ -18,8 +21,7 @@ from diffusers import (
|
|
| 18 |
StableDiffusionControlNetPipeline,
|
| 19 |
)
|
| 20 |
from preprocess_anime import Preprocessor
|
| 21 |
-
|
| 22 |
-
MAX_SEED = 2147483647
|
| 23 |
API_KEY = os.environ.get("API_KEY", None)
|
| 24 |
|
| 25 |
print("CUDA version:", torch.version.cuda)
|
|
@@ -98,6 +100,7 @@ def get_additional_prompt():
|
|
| 98 |
|
| 99 |
def get_prompt(prompt, additional_prompt):
|
| 100 |
default = "hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed"
|
|
|
|
| 101 |
randomize = get_additional_prompt()
|
| 102 |
# nude = "NSFW,((nude)),medium bare breasts,hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed"
|
| 103 |
# bodypaint = "((fully naked with no clothes)),nude naked seethroughxray,invisiblebodypaint,rating_newd,NSFW"
|
|
@@ -113,17 +116,18 @@ def get_prompt(prompt, additional_prompt):
|
|
| 113 |
naked_hoodie = "hyperrealistic photography, extremely detailed, medium hair, cityscape, (neon lights), score_9, HDA_NakedHoodie"
|
| 114 |
abg = "(1girl, asian body covered in words, words on body, tattoos of (words) on body),(masterpiece, best quality),medium breasts,(intricate details),unity 8k wallpaper,ultra detailed,(pastel colors),beautiful and aesthetic,see-through (clothes),detailed,solo"
|
| 115 |
# shibari = "extremely detailed, hyperrealistic photography, earrings, blushing, lace choker, tattoo, medium hair, score_9, HDA_Shibari"
|
| 116 |
-
shibari2 = "
|
| 117 |
|
| 118 |
if prompt == "":
|
| 119 |
-
prompts = [randomize, pet_play, bondage, lab_girl, athleisure, atompunk, maid, nundress, naked_hoodie, abg, shibari2
|
| 120 |
prompts_nsfw = [abg, shibari2, ahegao2]
|
| 121 |
preset = random.choice(prompts)
|
| 122 |
prompt = f"{preset}"
|
| 123 |
# print(f"-------------{preset}-------------")
|
| 124 |
else:
|
| 125 |
# prompt = f"{prompt}, {randomize}"
|
| 126 |
-
prompt = f"{default},{prompt}"
|
|
|
|
| 127 |
print(f"{prompt}")
|
| 128 |
return prompt
|
| 129 |
|
|
@@ -237,7 +241,7 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
|
| 237 |
step=1,
|
| 238 |
)
|
| 239 |
num_steps = gr.Slider(
|
| 240 |
-
label="Number of steps", minimum=1, maximum=100, value=
|
| 241 |
) # 20/4.5 or 12 without lora, 4 with lora
|
| 242 |
guidance_scale = gr.Slider(
|
| 243 |
label="Guidance scale", minimum=0.1, maximum=30.0, value=5.5, step=0.1
|
|
@@ -267,7 +271,7 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
|
| 267 |
sources=["upload"],
|
| 268 |
show_label=True,
|
| 269 |
mirror_webcam=True,
|
| 270 |
-
format="
|
| 271 |
)
|
| 272 |
# run button
|
| 273 |
with gr.Column():
|
|
@@ -277,7 +281,7 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
|
| 277 |
result = gr.Image(
|
| 278 |
label="Anime AI",
|
| 279 |
interactive=False,
|
| 280 |
-
format="
|
| 281 |
show_share_button= False,
|
| 282 |
)
|
| 283 |
# Use this image button
|
|
@@ -330,4 +334,5 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
|
| 330 |
def turn_buttons_on():
|
| 331 |
return gr.update(visible=True), gr.update(visible=True)
|
| 332 |
|
| 333 |
-
demo.queue(api_open=False).launch(show_api=False)
|
|
|
|
|
|
| 1 |
prod = True
|
| 2 |
+
port = 8080
|
| 3 |
show_options = True
|
| 4 |
if prod:
|
| 5 |
+
port = 8081
|
| 6 |
show_options = False
|
| 7 |
import os
|
| 8 |
import gc
|
|
|
|
| 10 |
import time
|
| 11 |
import gradio as gr
|
| 12 |
import spaces
|
| 13 |
+
import numpy as np
|
| 14 |
import imageio
|
| 15 |
from huggingface_hub import HfApi
|
| 16 |
import torch
|
|
|
|
| 21 |
StableDiffusionControlNetPipeline,
|
| 22 |
)
|
| 23 |
from preprocess_anime import Preprocessor
|
| 24 |
+
MAX_SEED = np.iinfo(np.int32).max
|
|
|
|
| 25 |
API_KEY = os.environ.get("API_KEY", None)
|
| 26 |
|
| 27 |
print("CUDA version:", torch.version.cuda)
|
|
|
|
| 100 |
|
| 101 |
def get_prompt(prompt, additional_prompt):
|
| 102 |
default = "hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed"
|
| 103 |
+
default2 = f"professional 3d model {prompt},octane render,highly detailed,volumetric,dramatic lighting,hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed"
|
| 104 |
randomize = get_additional_prompt()
|
| 105 |
# nude = "NSFW,((nude)),medium bare breasts,hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed"
|
| 106 |
# bodypaint = "((fully naked with no clothes)),nude naked seethroughxray,invisiblebodypaint,rating_newd,NSFW"
|
|
|
|
| 116 |
naked_hoodie = "hyperrealistic photography, extremely detailed, medium hair, cityscape, (neon lights), score_9, HDA_NakedHoodie"
|
| 117 |
abg = "(1girl, asian body covered in words, words on body, tattoos of (words) on body),(masterpiece, best quality),medium breasts,(intricate details),unity 8k wallpaper,ultra detailed,(pastel colors),beautiful and aesthetic,see-through (clothes),detailed,solo"
|
| 118 |
# shibari = "extremely detailed, hyperrealistic photography, earrings, blushing, lace choker, tattoo, medium hair, score_9, HDA_Shibari"
|
| 119 |
+
shibari2 = "octane render, highly detailed, volumetric, HDA_Shibari"
|
| 120 |
|
| 121 |
if prompt == "":
|
| 122 |
+
prompts = [randomize, pet_play, bondage, lab_girl, athleisure, atompunk, maid, nundress, naked_hoodie, abg, shibari2]
|
| 123 |
prompts_nsfw = [abg, shibari2, ahegao2]
|
| 124 |
preset = random.choice(prompts)
|
| 125 |
prompt = f"{preset}"
|
| 126 |
# print(f"-------------{preset}-------------")
|
| 127 |
else:
|
| 128 |
# prompt = f"{prompt}, {randomize}"
|
| 129 |
+
# prompt = f"{default},{prompt}"
|
| 130 |
+
prompt = default2
|
| 131 |
print(f"{prompt}")
|
| 132 |
return prompt
|
| 133 |
|
|
|
|
| 241 |
step=1,
|
| 242 |
)
|
| 243 |
num_steps = gr.Slider(
|
| 244 |
+
label="Number of steps", minimum=1, maximum=100, value=15, step=1
|
| 245 |
) # 20/4.5 or 12 without lora, 4 with lora
|
| 246 |
guidance_scale = gr.Slider(
|
| 247 |
label="Guidance scale", minimum=0.1, maximum=30.0, value=5.5, step=0.1
|
|
|
|
| 271 |
sources=["upload"],
|
| 272 |
show_label=True,
|
| 273 |
mirror_webcam=True,
|
| 274 |
+
format="webp",
|
| 275 |
)
|
| 276 |
# run button
|
| 277 |
with gr.Column():
|
|
|
|
| 281 |
result = gr.Image(
|
| 282 |
label="Anime AI",
|
| 283 |
interactive=False,
|
| 284 |
+
format="webp",
|
| 285 |
show_share_button= False,
|
| 286 |
)
|
| 287 |
# Use this image button
|
|
|
|
| 334 |
def turn_buttons_on():
|
| 335 |
return gr.update(visible=True), gr.update(visible=True)
|
| 336 |
|
| 337 |
+
# demo.queue(api_open=False).launch(show_api=False)
|
| 338 |
+
demo.queue(max_size=20).launch(server_name="localhost", server_port=port)
|
profiler.py
DELETED
|
@@ -1,381 +0,0 @@
|
|
| 1 |
-
import cProfile
|
| 2 |
-
import pstats
|
| 3 |
-
import io
|
| 4 |
-
import gc
|
| 5 |
-
import random
|
| 6 |
-
import time
|
| 7 |
-
import gradio as gr
|
| 8 |
-
import spaces
|
| 9 |
-
import imageio
|
| 10 |
-
from huggingface_hub import HfApi
|
| 11 |
-
import torch
|
| 12 |
-
from PIL import Image
|
| 13 |
-
from diffusers import (
|
| 14 |
-
ControlNetModel,
|
| 15 |
-
DPMSolverMultistepScheduler,
|
| 16 |
-
StableDiffusionControlNetPipeline,
|
| 17 |
-
)
|
| 18 |
-
from preprocess_anime import Preprocessor, conditionally_manage_memory
|
| 19 |
-
from settings import API_KEY, MAX_NUM_IMAGES, MAX_SEED
|
| 20 |
-
|
| 21 |
-
preprocessor = None
|
| 22 |
-
controlnet = None
|
| 23 |
-
scheduler = None
|
| 24 |
-
pipe = None
|
| 25 |
-
compiled = False
|
| 26 |
-
api = HfApi()
|
| 27 |
-
|
| 28 |
-
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
| 29 |
-
if randomize_seed:
|
| 30 |
-
seed = random.randint(0, MAX_SEED)
|
| 31 |
-
return seed
|
| 32 |
-
|
| 33 |
-
def get_additional_prompt():
|
| 34 |
-
prompt = "hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed"
|
| 35 |
-
top = ["tank top", "blouse", "button up shirt", "sweater", "corset top"]
|
| 36 |
-
bottom = ["short skirt", "athletic shorts", "jean shorts", "pleated skirt", "short skirt", "leggings", "high-waisted shorts"]
|
| 37 |
-
accessory = ["knee-high boots", "gloves", "Thigh-high stockings", "Garter belt", "choker", "necklace", "headband", "headphones"]
|
| 38 |
-
return f"{prompt}, {random.choice(top)}, {random.choice(bottom)}, {random.choice(accessory)}, score_9"
|
| 39 |
-
# outfit = ["schoolgirl outfit", "playboy outfit", "red dress", "gala dress", "cheerleader outfit", "nurse outfit", "Kimono"]
|
| 40 |
-
|
| 41 |
-
def get_prompt(prompt, additional_prompt):
|
| 42 |
-
default = "hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed"
|
| 43 |
-
randomize = get_additional_prompt()
|
| 44 |
-
nude = "NSFW,((nude)),medium bare breasts,hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed"
|
| 45 |
-
bodypaint = "((fully naked with no clothes)),nude naked seethroughxray,invisiblebodypaint,rating_newd,NSFW"
|
| 46 |
-
lab_girl = "hyperrealistic photography, extremely detailed, shy assistant wearing minidress boots and gloves, laboratory background, score_9, 1girl"
|
| 47 |
-
pet_play = "hyperrealistic photography, extremely detailed, playful, blush, glasses, collar, score_9, HDA_pet_play"
|
| 48 |
-
bondage = "hyperrealistic photography, extremely detailed, submissive, glasses, score_9, HDA_Bondage"
|
| 49 |
-
ahegao = "((invisible clothing)), hyperrealistic photography,exposed vagina,sexy,nsfw,HDA_Ahegao"
|
| 50 |
-
ahegao2 = "(invisiblebodypaint),rating_newd,HDA_Ahegao"
|
| 51 |
-
athleisure = "hyperrealistic photography, extremely detailed, 1girl athlete, exhausted embarrassed sweaty,outdoors, ((athleisure clothing)), score_9"
|
| 52 |
-
atompunk = "((atompunk world)), hyperrealistic photography, extremely detailed, short hair, bodysuit, glasses, neon cyberpunk background, score_9"
|
| 53 |
-
maid = "hyperrealistic photography, extremely detailed, shy, blushing, score_9, pastel background, HDA_unconventional_maid"
|
| 54 |
-
nundress = "hyperrealistic photography, extremely detailed, shy, blushing, fantasy background, score_9, HDA_NunDress"
|
| 55 |
-
naked_hoodie = "hyperrealistic photography, extremely detailed, medium hair, cityscape, (neon lights), score_9, HDA_NakedHoodie"
|
| 56 |
-
abg = "(1girl, asian body covered in words, words on body, tattoos of (words) on body),(masterpiece, best quality),medium breasts,(intricate details),unity 8k wallpaper,ultra detailed,(pastel colors),beautiful and aesthetic,see-through (clothes),detailed,solo"
|
| 57 |
-
shibari = "extremely detailed, hyperrealistic photography, earrings, blushing, lace choker, tattoo, medium hair, score_9, HDA_Shibari"
|
| 58 |
-
|
| 59 |
-
if prompt == "":
|
| 60 |
-
prompts = [randomize, nude, bodypaint, pet_play, bondage, ahegao2, lab_girl, athleisure, atompunk, maid, nundress, naked_hoodie, abg, shibari]
|
| 61 |
-
prompts_nsfw = [nude, bodypaint, abg, ahegao2, shibari]
|
| 62 |
-
preset = random.choice(prompts)
|
| 63 |
-
prompt = f"{preset}"
|
| 64 |
-
# print(f"-------------{preset}-------------")
|
| 65 |
-
else:
|
| 66 |
-
# prompt = f"{prompt}, {randomize}"
|
| 67 |
-
prompt = f"{default},{prompt}"
|
| 68 |
-
print(f"{prompt}")
|
| 69 |
-
return prompt
|
| 70 |
-
|
| 71 |
-
def initialize_models():
|
| 72 |
-
global preprocessor, controlnet, scheduler, pipe
|
| 73 |
-
if preprocessor is None:
|
| 74 |
-
preprocessor = Preprocessor()
|
| 75 |
-
|
| 76 |
-
if controlnet is None:
|
| 77 |
-
model_id = "lllyasviel/control_v11p_sd15_normalbae"
|
| 78 |
-
print("initializing controlnet")
|
| 79 |
-
controlnet = ControlNetModel.from_pretrained(
|
| 80 |
-
model_id,
|
| 81 |
-
torch_dtype=torch.float16,
|
| 82 |
-
attn_implementation="flash_attention_2",
|
| 83 |
-
).to("cuda")
|
| 84 |
-
|
| 85 |
-
if scheduler is None:
|
| 86 |
-
scheduler = DPMSolverMultistepScheduler.from_pretrained(
|
| 87 |
-
"runwayml/stable-diffusion-v1-5",
|
| 88 |
-
solver_order=2,
|
| 89 |
-
subfolder="scheduler",
|
| 90 |
-
use_karras_sigmas=True,
|
| 91 |
-
final_sigmas_type="sigma_min",
|
| 92 |
-
algorithm_type="sde-dpmsolver++",
|
| 93 |
-
prediction_type="epsilon",
|
| 94 |
-
thresholding=False,
|
| 95 |
-
denoise_final=True,
|
| 96 |
-
device_map="cuda",
|
| 97 |
-
)
|
| 98 |
-
|
| 99 |
-
if pipe is None:
|
| 100 |
-
base_model_url = "https://huggingface.co/broyang/hentaidigitalart_v20/blob/main/realcartoon3d_v15.safetensors"
|
| 101 |
-
pipe = StableDiffusionControlNetPipeline.from_single_file(
|
| 102 |
-
base_model_url,
|
| 103 |
-
safety_checker=None,
|
| 104 |
-
controlnet=controlnet,
|
| 105 |
-
scheduler=scheduler,
|
| 106 |
-
torch_dtype=torch.float16,
|
| 107 |
-
)
|
| 108 |
-
pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="EasyNegativeV2.safetensors", token="EasyNegativeV2")
|
| 109 |
-
pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="badhandv4.pt", token="badhandv4")
|
| 110 |
-
pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_Ahegao.pt", token="HDA_Ahegao")
|
| 111 |
-
pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_Bondage.pt", token="HDA_Bondage")
|
| 112 |
-
pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_pet_play.pt", token="HDA_pet_play")
|
| 113 |
-
pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="fcNeg-neg.pt", token="fcNeg-neg")
|
| 114 |
-
pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_unconventional maid.pt", token="HDA_unconventional_maid")
|
| 115 |
-
pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_NakedHoodie.pt", token="HDA_NakedHoodie")
|
| 116 |
-
pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_NunDress.pt", token="HDA_NunDress")
|
| 117 |
-
pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_Shibari.pt", token="HDA_Shibari")
|
| 118 |
-
pipe.to("cuda")
|
| 119 |
-
print("---------------Loaded controlnet pipeline---------------")
|
| 120 |
-
|
| 121 |
-
@spaces.GPU(duration=11)
|
| 122 |
-
@torch.inference_mode()
|
| 123 |
-
def process_image(
|
| 124 |
-
image,
|
| 125 |
-
prompt,
|
| 126 |
-
a_prompt,
|
| 127 |
-
n_prompt,
|
| 128 |
-
num_images,
|
| 129 |
-
image_resolution,
|
| 130 |
-
preprocess_resolution,
|
| 131 |
-
num_steps,
|
| 132 |
-
guidance_scale,
|
| 133 |
-
seed,
|
| 134 |
-
):
|
| 135 |
-
initialize_models()
|
| 136 |
-
preprocessor.load("NormalBae")
|
| 137 |
-
control_image = preprocessor(
|
| 138 |
-
image=image,
|
| 139 |
-
image_resolution=image_resolution,
|
| 140 |
-
detect_resolution=preprocess_resolution,
|
| 141 |
-
)
|
| 142 |
-
custom_prompt = str(get_prompt(prompt, a_prompt))
|
| 143 |
-
negative_prompt = str(n_prompt)
|
| 144 |
-
global compiled
|
| 145 |
-
generator = torch.cuda.manual_seed(seed)
|
| 146 |
-
if not compiled:
|
| 147 |
-
print("-----------------------------------Not Compiled-----------------------------------")
|
| 148 |
-
compiled = True
|
| 149 |
-
start = time.time()
|
| 150 |
-
results = pipe(
|
| 151 |
-
prompt=custom_prompt,
|
| 152 |
-
negative_prompt=negative_prompt,
|
| 153 |
-
guidance_scale=guidance_scale,
|
| 154 |
-
num_images_per_prompt=num_images,
|
| 155 |
-
num_inference_steps=num_steps,
|
| 156 |
-
generator=generator,
|
| 157 |
-
image=control_image,
|
| 158 |
-
).images[0]
|
| 159 |
-
print(f"Inference done in: {time.time() - start:.2f} seconds")
|
| 160 |
-
|
| 161 |
-
timestamp = int(time.time())
|
| 162 |
-
img_path = f"{timestamp}.jpg"
|
| 163 |
-
results_path = f"{timestamp}_out.jpg"
|
| 164 |
-
imageio.imsave(img_path, image)
|
| 165 |
-
results.save(results_path)
|
| 166 |
-
|
| 167 |
-
api.upload_file(
|
| 168 |
-
path_or_fileobj=img_path,
|
| 169 |
-
path_in_repo=img_path,
|
| 170 |
-
repo_id="broyang/anime-ai-outputs",
|
| 171 |
-
repo_type="dataset",
|
| 172 |
-
token=API_KEY,
|
| 173 |
-
run_as_future=True,
|
| 174 |
-
)
|
| 175 |
-
api.upload_file(
|
| 176 |
-
path_or_fileobj=results_path,
|
| 177 |
-
path_in_repo=results_path,
|
| 178 |
-
repo_id="broyang/anime-ai-outputs",
|
| 179 |
-
repo_type="dataset",
|
| 180 |
-
token=API_KEY,
|
| 181 |
-
run_as_future=True,
|
| 182 |
-
)
|
| 183 |
-
|
| 184 |
-
conditionally_manage_memory()
|
| 185 |
-
|
| 186 |
-
results.save("temp_image.png")
|
| 187 |
-
return results
|
| 188 |
-
|
| 189 |
-
def main():
|
| 190 |
-
prod = True
|
| 191 |
-
show_options = True
|
| 192 |
-
if prod:
|
| 193 |
-
show_options = False
|
| 194 |
-
|
| 195 |
-
print("CUDA version:", torch.version.cuda)
|
| 196 |
-
print("loading pipe")
|
| 197 |
-
|
| 198 |
-
css = """
|
| 199 |
-
h1 {
|
| 200 |
-
text-align: center;
|
| 201 |
-
display:block;
|
| 202 |
-
}
|
| 203 |
-
h2 {
|
| 204 |
-
text-align: center;
|
| 205 |
-
display:block;
|
| 206 |
-
}
|
| 207 |
-
h3 {
|
| 208 |
-
text-align: center;
|
| 209 |
-
display:block;
|
| 210 |
-
}
|
| 211 |
-
footer {visibility: hidden}
|
| 212 |
-
"""
|
| 213 |
-
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
| 214 |
-
with gr.Row():
|
| 215 |
-
with gr.Accordion("Advanced options", open=show_options, visible=show_options):
|
| 216 |
-
num_images = gr.Slider(
|
| 217 |
-
label="Images", minimum=1, maximum=MAX_NUM_IMAGES, value=1, step=1
|
| 218 |
-
)
|
| 219 |
-
image_resolution = gr.Slider(
|
| 220 |
-
label="Image resolution",
|
| 221 |
-
minimum=256,
|
| 222 |
-
maximum=1024,
|
| 223 |
-
value=768,
|
| 224 |
-
step=256,
|
| 225 |
-
)
|
| 226 |
-
preprocess_resolution = gr.Slider(
|
| 227 |
-
label="Preprocess resolution",
|
| 228 |
-
minimum=128,
|
| 229 |
-
maximum=1024,
|
| 230 |
-
value=768,
|
| 231 |
-
step=1,
|
| 232 |
-
)
|
| 233 |
-
num_steps = gr.Slider(
|
| 234 |
-
label="Number of steps", minimum=1, maximum=100, value=12, step=1
|
| 235 |
-
)
|
| 236 |
-
guidance_scale = gr.Slider(
|
| 237 |
-
label="Guidance scale", minimum=0.1, maximum=30.0, value=5.5, step=0.1
|
| 238 |
-
)
|
| 239 |
-
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
|
| 240 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 241 |
-
a_prompt = gr.Textbox(
|
| 242 |
-
label="Additional prompt",
|
| 243 |
-
value = ""
|
| 244 |
-
)
|
| 245 |
-
n_prompt = gr.Textbox(
|
| 246 |
-
label="Negative prompt",
|
| 247 |
-
value="EasyNegativeV2, fcNeg, (badhandv4:1.4), (worst quality, low quality, bad quality, normal quality:2.0), (bad hands, missing fingers, extra fingers:2.0)",
|
| 248 |
-
)
|
| 249 |
-
with gr.Column():
|
| 250 |
-
prompt = gr.Textbox(
|
| 251 |
-
label="Description",
|
| 252 |
-
placeholder="Leave empty for something spicy 👀",
|
| 253 |
-
)
|
| 254 |
-
with gr.Row():
|
| 255 |
-
with gr.Column():
|
| 256 |
-
image = gr.Image(
|
| 257 |
-
label="Input",
|
| 258 |
-
sources=["upload"],
|
| 259 |
-
show_label=True,
|
| 260 |
-
format="webp",
|
| 261 |
-
)
|
| 262 |
-
with gr.Column():
|
| 263 |
-
run_button = gr.Button(value="Use this one", size=["lg"], visible=False)
|
| 264 |
-
with gr.Column():
|
| 265 |
-
result = gr.Image(
|
| 266 |
-
label="Anime AI",
|
| 267 |
-
interactive=False,
|
| 268 |
-
format="webp",
|
| 269 |
-
visible = True,
|
| 270 |
-
show_share_button= False,
|
| 271 |
-
)
|
| 272 |
-
with gr.Column():
|
| 273 |
-
use_ai_button = gr.Button(value="Use this one", size=["lg"], visible=False)
|
| 274 |
-
config = [
|
| 275 |
-
image,
|
| 276 |
-
prompt,
|
| 277 |
-
a_prompt,
|
| 278 |
-
n_prompt,
|
| 279 |
-
num_images,
|
| 280 |
-
image_resolution,
|
| 281 |
-
preprocess_resolution,
|
| 282 |
-
num_steps,
|
| 283 |
-
guidance_scale,
|
| 284 |
-
seed,
|
| 285 |
-
]
|
| 286 |
-
|
| 287 |
-
@spaces.GPU(duration=11)
|
| 288 |
-
@torch.inference_mode()
|
| 289 |
-
@gr.on(triggers=[image.upload], inputs=config, outputs=[result])
|
| 290 |
-
def auto_process_image(image, prompt, a_prompt, n_prompt, num_images, image_resolution, preprocess_resolution, num_steps, guidance_scale, seed):
|
| 291 |
-
return process_image(image, prompt, a_prompt, n_prompt, num_images, image_resolution, preprocess_resolution, num_steps, guidance_scale, seed)
|
| 292 |
-
|
| 293 |
-
@gr.on(triggers=[image.upload], inputs=None, outputs=[use_ai_button, run_button])
|
| 294 |
-
def turn_buttons_off():
|
| 295 |
-
return gr.update(visible=False), gr.update(visible=False)
|
| 296 |
-
|
| 297 |
-
@gr.on(triggers=[use_ai_button.click], inputs=None, outputs=[use_ai_button, run_button])
|
| 298 |
-
def turn_buttons_off():
|
| 299 |
-
return gr.update(visible=False), gr.update(visible=False)
|
| 300 |
-
|
| 301 |
-
@gr.on(triggers=[run_button.click], inputs=None, outputs=[use_ai_button, run_button])
|
| 302 |
-
def turn_buttons_off():
|
| 303 |
-
return gr.update(visible=False), gr.update(visible=False)
|
| 304 |
-
|
| 305 |
-
@gr.on(triggers=[result.change], inputs=None, outputs=[use_ai_button, run_button])
|
| 306 |
-
def turn_buttons_on():
|
| 307 |
-
return gr.update(visible=True), gr.update(visible=True)
|
| 308 |
-
|
| 309 |
-
with gr.Row():
|
| 310 |
-
helper_text = gr.Markdown("## Tap and hold (on mobile) to save the image.", visible=True)
|
| 311 |
-
|
| 312 |
-
prompt.submit(
|
| 313 |
-
fn=randomize_seed_fn,
|
| 314 |
-
inputs=[seed, randomize_seed],
|
| 315 |
-
outputs=seed,
|
| 316 |
-
queue=False,
|
| 317 |
-
api_name=False,
|
| 318 |
-
show_progress="none",
|
| 319 |
-
).then(
|
| 320 |
-
fn=auto_process_image,
|
| 321 |
-
inputs=config,
|
| 322 |
-
outputs=result,
|
| 323 |
-
api_name=False,
|
| 324 |
-
show_progress="minimal",
|
| 325 |
-
)
|
| 326 |
-
|
| 327 |
-
run_button.click(
|
| 328 |
-
fn=randomize_seed_fn,
|
| 329 |
-
inputs=[seed, randomize_seed],
|
| 330 |
-
outputs=seed,
|
| 331 |
-
queue=False,
|
| 332 |
-
api_name=False,
|
| 333 |
-
show_progress="none",
|
| 334 |
-
).then(
|
| 335 |
-
fn=auto_process_image,
|
| 336 |
-
inputs=config,
|
| 337 |
-
outputs=result,
|
| 338 |
-
show_progress="minimal",
|
| 339 |
-
)
|
| 340 |
-
|
| 341 |
-
def update_config():
|
| 342 |
-
try:
|
| 343 |
-
print("Updating image to AI Temp Image")
|
| 344 |
-
ai_temp_image = Image.open("temp_image.png")
|
| 345 |
-
return ai_temp_image
|
| 346 |
-
except FileNotFoundError:
|
| 347 |
-
print("No AI Image Available")
|
| 348 |
-
return None
|
| 349 |
-
|
| 350 |
-
use_ai_button.click(
|
| 351 |
-
fn=randomize_seed_fn,
|
| 352 |
-
inputs=[seed, randomize_seed],
|
| 353 |
-
outputs=seed,
|
| 354 |
-
queue=False,
|
| 355 |
-
api_name=False,
|
| 356 |
-
show_progress="none",
|
| 357 |
-
).then(
|
| 358 |
-
fn=lambda _: update_config(),
|
| 359 |
-
inputs=[image],
|
| 360 |
-
outputs=image,
|
| 361 |
-
show_progress="minimal",
|
| 362 |
-
).then(
|
| 363 |
-
fn=auto_process_image,
|
| 364 |
-
inputs=[image, prompt, a_prompt, n_prompt, num_images, image_resolution, preprocess_resolution, num_steps, guidance_scale, seed],
|
| 365 |
-
outputs=result,
|
| 366 |
-
show_progress="minimal",
|
| 367 |
-
)
|
| 368 |
-
|
| 369 |
-
demo.launch()
|
| 370 |
-
|
| 371 |
-
if __name__ == "__main__":
|
| 372 |
-
pr = cProfile.Profile()
|
| 373 |
-
pr.enable()
|
| 374 |
-
main()
|
| 375 |
-
pr.disable()
|
| 376 |
-
|
| 377 |
-
s = io.StringIO()
|
| 378 |
-
sortby = 'cumulative'
|
| 379 |
-
ps = pstats.Stats(pr, stream=s).sort_stats(sortby)
|
| 380 |
-
ps.print_stats()
|
| 381 |
-
print(s.getvalue())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|