Spaces:
Sleeping
Sleeping
Update custom_utils.py
Browse files- custom_utils.py +12 -8
custom_utils.py
CHANGED
@@ -29,10 +29,12 @@ def rag_retrieval_naive(openai_api_key,
|
|
29 |
# Naive RAG: Semantic search
|
30 |
|
31 |
retrieval_result = vector_search_naive(
|
32 |
-
openai_api_key,
|
33 |
-
prompt,
|
34 |
-
|
35 |
-
|
|
|
|
|
36 |
vector_index
|
37 |
)
|
38 |
|
@@ -122,11 +124,13 @@ def invoke_llm(openai_api_key, content):
|
|
122 |
return completion.choices[0].message.content
|
123 |
|
124 |
def vector_search_naive(openai_api_key,
|
125 |
-
|
|
|
|
|
126 |
db,
|
127 |
collection,
|
128 |
vector_index="vector_index"):
|
129 |
-
query_embedding = get_text_embedding(openai_api_key,
|
130 |
|
131 |
if query_embedding is None:
|
132 |
return "Invalid query or embedding generation failed."
|
@@ -150,14 +154,14 @@ def vector_search_naive(openai_api_key,
|
|
150 |
return invoke_search(db, collection, pipeline)
|
151 |
|
152 |
def vector_search_advanced(openai_api_key,
|
153 |
-
|
154 |
accommodates,
|
155 |
bedrooms,
|
156 |
db,
|
157 |
collection,
|
158 |
additional_stages=[],
|
159 |
vector_index="vector_index"):
|
160 |
-
query_embedding = get_text_embedding(openai_api_key,
|
161 |
|
162 |
if query_embedding is None:
|
163 |
return "Invalid query or embedding generation failed."
|
|
|
29 |
# Naive RAG: Semantic search
|
30 |
|
31 |
retrieval_result = vector_search_naive(
|
32 |
+
openai_api_key,
|
33 |
+
prompt,
|
34 |
+
accomodates,
|
35 |
+
bedrooms,
|
36 |
+
db,
|
37 |
+
collection,
|
38 |
vector_index
|
39 |
)
|
40 |
|
|
|
124 |
return completion.choices[0].message.content
|
125 |
|
126 |
def vector_search_naive(openai_api_key,
|
127 |
+
prompt,
|
128 |
+
accomodates,
|
129 |
+
bedrooms,
|
130 |
db,
|
131 |
collection,
|
132 |
vector_index="vector_index"):
|
133 |
+
query_embedding = get_text_embedding(openai_api_key, prompt)
|
134 |
|
135 |
if query_embedding is None:
|
136 |
return "Invalid query or embedding generation failed."
|
|
|
154 |
return invoke_search(db, collection, pipeline)
|
155 |
|
156 |
def vector_search_advanced(openai_api_key,
|
157 |
+
prompt,
|
158 |
accommodates,
|
159 |
bedrooms,
|
160 |
db,
|
161 |
collection,
|
162 |
additional_stages=[],
|
163 |
vector_index="vector_index"):
|
164 |
+
query_embedding = get_text_embedding(openai_api_key, prompt)
|
165 |
|
166 |
if query_embedding is None:
|
167 |
return "Invalid query or embedding generation failed."
|