Spaces:
Runtime error
Runtime error
| import whisper | |
| from pytube import YouTube | |
| import requests | |
| import time | |
| import streamlit as st | |
| from streamlit_lottie import st_lottie | |
| import numpy as np | |
| import os | |
| from typing import Iterator | |
| from io import StringIO | |
| from utils import write_vtt, write_srt | |
| import ffmpeg | |
| from languages import LANGUAGES | |
| st.set_page_config(page_title="تولید کننده ویدیو زیرنویس خودکار", page_icon=":movie_camera:", layout="wide") | |
| # Define a function that we can use to load lottie files from a link. | |
| def load_lottieurl(url: str): | |
| r = requests.get(url) | |
| if r.status_code != 200: | |
| return None | |
| return r.json() | |
| col1, col2 = st.columns([1, 3]) | |
| with col1: | |
| lottie = load_lottieurl("https://assets8.lottiefiles.com/packages/lf20_jh9gfdye.json") | |
| st_lottie(lottie) | |
| with col2: | |
| st.write(""" | |
| ## تولید کننده ویدئو زیرنویس خودکار | |
| ##### یک لینک ویدیوی YouTube وارد کنید و یک ویدیو با زیرنویس دریافت کنید. | |
| ###### ➠ اگر میخواهید ویدیو را به زبان اصلی آن رونویسی کنید، کار را به عنوان «Transcribe» انتخاب کنید. | |
| ###### ➠ اگر می خواهید زیرنویس ها را به انگلیسی ترجمه کنید، کار را به عنوان "Translate" انتخاب کنید. | |
| ###### توصیه می کنم از مدل پایه شروع کنید و سپس با مدل های بزرگتر آزمایش کنید، مدل های کوچک و متوسط اغلب به خوبی کار می کنند. """) | |
| def populate_metadata(link): | |
| yt = YouTube(link) | |
| author = yt.author | |
| title = yt.title | |
| description = yt.description | |
| thumbnail = yt.thumbnail_url | |
| length = yt.length | |
| views = yt.views | |
| return author, title, description, thumbnail, length, views | |
| def download_video(link): | |
| yt = YouTube(link) | |
| video = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first().download() | |
| return video | |
| def convert(seconds): | |
| return time.strftime("%H:%M:%S", time.gmtime(seconds)) | |
| loaded_model = whisper.load_model("base") | |
| current_size = "None" | |
| def change_model(current_size, size): | |
| if current_size != size: | |
| loaded_model = whisper.load_model(size) | |
| return loaded_model | |
| else: | |
| raise Exception("Model size is the same as the current size.") | |
| def inference(link, loaded_model, task): | |
| yt = YouTube(link) | |
| path = yt.streams.filter(only_audio=True)[0].download(filename="audio.mp3") | |
| if task == "Transcribe": | |
| options = dict(task="transcribe", best_of=5) | |
| results = loaded_model.transcribe(path, **options) | |
| vtt = getSubs(results["segments"], "vtt", 80) | |
| srt = getSubs(results["segments"], "srt", 80) | |
| lang = results["language"] | |
| return results["text"], vtt, srt, lang | |
| elif task == "Translate": | |
| options = dict(task="translate", best_of=5) | |
| results = loaded_model.transcribe(path, **options) | |
| vtt = getSubs(results["segments"], "vtt", 80) | |
| srt = getSubs(results["segments"], "srt", 80) | |
| lang = results["language"] | |
| return results["text"], vtt, srt, lang | |
| else: | |
| raise ValueError("Task not supported") | |
| def getSubs(segments: Iterator[dict], format: str, maxLineWidth: int) -> str: | |
| segmentStream = StringIO() | |
| if format == 'vtt': | |
| write_vtt(segments, file=segmentStream, maxLineWidth=maxLineWidth) | |
| elif format == 'srt': | |
| write_srt(segments, file=segmentStream, maxLineWidth=maxLineWidth) | |
| else: | |
| raise Exception("Unknown format " + format) | |
| segmentStream.seek(0) | |
| return segmentStream.read() | |
| def get_language_code(language): | |
| if language in LANGUAGES.keys(): | |
| detected_language = LANGUAGES[language] | |
| return detected_language | |
| else: | |
| raise ValueError("Language not supported") | |
| def generate_subtitled_video(video, audio, transcript): | |
| video_file = ffmpeg.input(video) | |
| audio_file = ffmpeg.input(audio) | |
| ffmpeg.concat(video_file.filter("subtitles", transcript), audio_file, v=1, a=1).output("final.mp4").run(quiet=True, overwrite_output=True) | |
| video_with_subs = open("final.mp4", "rb") | |
| return video_with_subs | |
| def main(): | |
| size = st.selectbox("اندازه مدل را انتخاب کنید (هرچه مدل بزرگتر باشد، رونویسی دقیق تر خواهد بود، اما زمان بیشتری طول می کشد)", ["tiny", "base", "small", "medium", "large"], index=1) | |
| loaded_model = change_model(current_size, size) | |
| st.write(f"Model is {'multilingual' if loaded_model.is_multilingual else 'English-only'} " | |
| f"and has {sum(np.prod(p.shape) for p in loaded_model.parameters()):,} parameters.") | |
| link = st.text_input("پیوند یوتیوب (هرچه ویدیو طولانی تر باشد، زمان پردازش بیشتر است)") | |
| task = st.selectbox("وظیفه را انتخاب کنید", ["Transcribe", "Translate"], index=0) | |
| if task == "Transcribe": | |
| if st.button("Transcribe"): | |
| author, title, description, thumbnail, length, views = populate_metadata(link) | |
| results = inference(link, loaded_model, task) | |
| video = download_video(link) | |
| lang = results[3] | |
| detected_language = get_language_code(lang) | |
| col3, col4 = st.columns(2) | |
| col5, col6, col7, col8 = st.columns(4) | |
| col9, col10 = st.columns(2) | |
| with col3: | |
| st.video(video) | |
| # Write the results to a .txt file and download it. | |
| with open("transcript.txt", "w+", encoding='utf8') as f: | |
| f.writelines(results[0]) | |
| f.close() | |
| with open(os.path.join(os.getcwd(), "transcript.txt"), "rb") as f: | |
| datatxt = f.read() | |
| with open("transcript.vtt", "w+",encoding='utf8') as f: | |
| f.writelines(results[1]) | |
| f.close() | |
| with open(os.path.join(os.getcwd(), "transcript.vtt"), "rb") as f: | |
| datavtt = f.read() | |
| with open("transcript.srt", "w+",encoding='utf8') as f: | |
| f.writelines(results[2]) | |
| f.close() | |
| with open(os.path.join(os.getcwd(), "transcript.srt"), "rb") as f: | |
| datasrt = f.read() | |
| with col5: | |
| st.download_button(label="Download Transcript (.txt)", | |
| data=datatxt, | |
| file_name="transcript.txt") | |
| with col6: | |
| st.download_button(label="Download Transcript (.vtt)", | |
| data=datavtt, | |
| file_name="transcript.vtt") | |
| with col7: | |
| st.download_button(label="Download Transcript (.srt)", | |
| data=datasrt, | |
| file_name="transcript.srt") | |
| with col9: | |
| st.success("You can download the transcript in .srt format, edit it (if you need to) and upload it to YouTube to create subtitles for your video.") | |
| with col10: | |
| st.info("Streamlit refreshes after the download button is clicked. The data is cached so you can download the transcript again without having to transcribe the video again.") | |
| with col4: | |
| with st.spinner("Generating Subtitled Video"): | |
| video_with_subs = generate_subtitled_video(video, "audio.mp3", "transcript.srt") | |
| st.video(video_with_subs) | |
| st.balloons() | |
| with col8: | |
| st.download_button(label="Download Subtitled Video", | |
| data=video_with_subs, | |
| file_name=f"{title} with subtitles.mp4") | |
| elif task == "Translate": | |
| if st.button("Translate to English"): | |
| author, title, description, thumbnail, length, views = populate_metadata(link) | |
| results = inference(link, loaded_model, task) | |
| video = download_video(link) | |
| lang = results[3] | |
| detected_language = get_language_code(lang) | |
| col3, col4 = st.columns(2) | |
| col5, col6, col7, col8 = st.columns(4) | |
| col9, col10 = st.columns(2) | |
| with col3: | |
| st.video(video) | |
| # Write the results to a .txt file and download it. | |
| with open("transcript.txt", "w+", encoding='utf8') as f: | |
| f.writelines(results[0]) | |
| f.close() | |
| with open(os.path.join(os.getcwd(), "transcript.txt"), "rb") as f: | |
| datatxt = f.read() | |
| with open("transcript.vtt", "w+",encoding='utf8') as f: | |
| f.writelines(results[1]) | |
| f.close() | |
| with open(os.path.join(os.getcwd(), "transcript.vtt"), "rb") as f: | |
| datavtt = f.read() | |
| with open("transcript.srt", "w+",encoding='utf8') as f: | |
| f.writelines(results[2]) | |
| f.close() | |
| with open(os.path.join(os.getcwd(), "transcript.srt"), "rb") as f: | |
| datasrt = f.read() | |
| with col5: | |
| st.download_button(label="Download Transcript (.txt)", | |
| data=datatxt, | |
| file_name="transcript.txt") | |
| with col6: | |
| st.download_button(label="Download Transcript (.vtt)", | |
| data=datavtt, | |
| file_name="transcript.vtt") | |
| with col7: | |
| st.download_button(label="Download Transcript (.srt)", | |
| data=datasrt, | |
| file_name="transcript.srt") | |
| with col9: | |
| st.success("You can download the transcript in .srt format, edit it (if you need to) and upload it to YouTube to create subtitles for your video.") | |
| with col10: | |
| st.info("Streamlit refreshes after the download button is clicked. The data is cached so you can download the transcript again without having to transcribe the video again.") | |
| with col4: | |
| with st.spinner("Generating Subtitled Video"): | |
| video_with_subs = generate_subtitled_video(video, "audio.mp3", "transcript.srt") | |
| st.video(video_with_subs) | |
| st.balloons() | |
| with col8: | |
| st.download_button(label="Download Subtitled Video", | |
| data=video_with_subs, | |
| file_name=f"{title} with subtitles.mp4") | |
| else: | |
| st.error("Please select a task.") | |
| if __name__ == "__main__": | |
| main() | |
| st.markdown("###### Made with :heart: by [@bugbounted](https://github.com/bugbounted)") |