File size: 4,499 Bytes
225177d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import streamlit as st
import pandas as pd
import altair as alt
import base64
import pdfkit
import io
from comparateur import get_table_empreintes_detailed

def load_svg_as_base64(svg_file_path):
    with open(svg_file_path, "rb") as svg_file:
        return base64.b64encode(svg_file.read()).decode()

def save_pdf(html_content):
    pdf = pdfkit.from_string(html_content, False)
    return pdf

def display_cf_comparison():
    svg_file_path = "feuille.svg"
    svg_base64 = load_svg_as_base64(svg_file_path)
    
    html_content = f"""
    <h2>Votre consommation Carbone</h2>
    <img src='data:image/svg+xml;base64,{svg_base64}' alt='svg' width='15' height='15' style='margin-left: 10px;'>
    <br>
    """
    
    serveur_emission = st.session_state['emission'].stop()
    emission_api = sum([value["el"] for value in st.session_state["partial_emissions"].values()])

    total_emission = serveur_emission + emission_api

    pourcentage_api = emission_api / total_emission
    pourcentage_serveur = serveur_emission / total_emission

    html_content += f"<div style='text-align: center; margin-bottom: 10px;'><b>{total_emission*1000:.3f}</b> g eq. CO2</div>"
    html_content += f"<p>Dont :</p>"
    html_content += f"<p>- Empreinte serveur (via CodeCarbon) : <b>{serveur_emission*1000:.3f}</b> g eq. CO2 ({pourcentage_serveur:.2%})</p>"
    html_content += f"<p>- Empreinte IA (via EcoLogits) : <b>{emission_api*1000:.3f}</b> g eq. CO2 ({pourcentage_api:.2%})</p>"

    html_content += "<h2>Votre équivalence</h2>"
    # Implement the `display_comparaison` function as needed
    # display_comparaison(col1, total_emission, dict_comparaison_1kgCO2["eau en litre"][0]*1000, dict_comparaison_1kgCO2["eau en litre"][1], "ml")
    # display_comparaison(col2, total_emission, dict_comparaison_1kgCO2["tgv en km"][0], dict_comparaison_1kgCO2["tgv en km"][1], "km")
    # display_comparaison(col3, total_emission, dict_comparaison_1kgCO2["voiture en km"][0]*1000, dict_comparaison_1kgCO2["voiture en km"][1], "m")
    
    html_content += f"""
    <br>
    <p>Powered by <b>ADEME</b></p>
    <a href='https://www.ademe.fr' target='_blank'><img src='https://www.ademe.fr/wp-content/uploads/2022/11/ademe-logo-2022-1.svg' alt='svg' width='30' height='30' style='margin-left: 10px;'></a>
    <br>
    """
    
    #st.markdown(html_content, unsafe_allow_html=True)
    return html_content

def color_scale(val):
    if val == '-':
        return 'background-color: white'
    elif val <= 1:
        return 'background-color: rgba(0,100,0,0.5)'  # dark green with opacity
    elif val <= 10:
        return 'background-color: rgba(0,128,0,0.5)'  # green with opacity
    elif val <= 50:
        return 'background-color: rgba(255,255,0,0.5)'  # yellow with opacity
    elif val <= 100:
        return 'background-color: rgba(255,165,0,0.5)'  # orange with opacity
    else:
        return 'background-color: rgba(255,0,0,0.5)'  # red with opacity


def get_carbon_footprint_html():

    html_content = ""
    html_content += display_cf_comparison()
    
    table = get_table_empreintes_detailed()
    table.replace({0.00: '-'}, inplace=True)
    styled_df = table[['Consommation Totale']].rename(columns={'Consommation Totale': 'Consommation Cumulée (g eqCo2)'})
    styled_df = styled_df.style.applymap(color_scale, subset=['Consommation Cumulée (g eqCo2)'])
    
    
    html_content += """
    <h2>DETAIL PAR TACHE</h2>
    """
    html_content += styled_df.to_html()

    serveur_emission = st.session_state['emission'].stop()
    emission_api = sum([value["el"] for value in st.session_state["partial_emissions"].values()])

    total_emission = serveur_emission + emission_api

    pourcentage_api = emission_api / total_emission
    pourcentage_serveur = serveur_emission / total_emission

    df = pd.DataFrame({"Categorie": ["Identification + dessin", "Dialogue avec IA"], "valeur": [pourcentage_serveur, pourcentage_api]})
    base = alt.Chart(df).encode(
        theta=alt.Theta(field="valeur", type="quantitative", stack=True),
        color=alt.Color(field="Categorie", type="nominal")
    )

    pie = base.mark_arc(outerRadius=100)
    text = base.mark_text(radius=115, fill="black").encode(alt.Text(field="valeur", type="quantitative", format=".2%"))

    chart = alt.layer(pie, text, data=df).resolve_scale(theta="independent")

    
    html_content += """
    <h2>SYNTHESE (Dialogue IA et non IA)</h2>
    """
    html_content += chart.to_html()
    
    return html_content