LaurentTRIPIED commited on
Commit
52e5c1d
1 Parent(s): 1b7b20e

V2-Liste_MAP_Stat_17

Browse files
Files changed (1) hide show
  1. statistiques.py +13 -2
statistiques.py CHANGED
@@ -2,9 +2,9 @@
2
  import streamlit as st
3
  import pandas as pd
4
  import plotly.express as px
5
- import matplotlib.pyplot as plt
6
  from data_manager import get_data
7
  from wordcloud import WordCloud, STOPWORDS
 
8
 
9
  def display_companies_by_sector(df):
10
  sector_counts = df['libelle_section_naf'].value_counts().reset_index()
@@ -20,12 +20,22 @@ def display_company_sizes(df):
20
  fig.update_traces(marker_color='green')
21
  st.plotly_chart(fig)
22
 
 
 
 
 
 
 
 
 
23
  def display_rse_actions_wordcloud(df):
24
- st.title("Cartographie des Actions RSE")
25
 
26
  custom_stopwords = set(["d ", "des", "qui", "ainsi", "toute", "hors", "plus", "cette", "afin", "via", "d'", "sa", "dans", "ont", "avec", "aux", "ce", "chez", "ont", "cela", "la", "un", "avons", "par", "c'est", "s'est", "aussi", "leurs", "d'un", "nos", "les", "sur", "ses", "tous", "nous", "du", "notre", "de", "et", "est", "pour", "le", "une", "se", "en", "au", "à", "que", "sont", "leur", "son"])
27
  stopwords = STOPWORDS.union(custom_stopwords)
 
28
  text = " ".join(action for action in df['action_rse'].dropna())
 
29
  wordcloud = WordCloud(stopwords=stopwords, background_color="white", width=800, height=400).generate(text)
30
 
31
  fig, ax = plt.subplots()
@@ -41,6 +51,7 @@ def main():
41
  if not df.empty:
42
  display_companies_by_sector(df)
43
  display_company_sizes(df)
 
44
  display_rse_actions_wordcloud(df)
45
 
46
  if __name__ == "__main__":
 
2
  import streamlit as st
3
  import pandas as pd
4
  import plotly.express as px
 
5
  from data_manager import get_data
6
  from wordcloud import WordCloud, STOPWORDS
7
+ import matplotlib.pyplot as plt
8
 
9
  def display_companies_by_sector(df):
10
  sector_counts = df['libelle_section_naf'].value_counts().reset_index()
 
20
  fig.update_traces(marker_color='green')
21
  st.plotly_chart(fig)
22
 
23
+ def display_companies_by_commune(df):
24
+ commune_counts = df['commune'].value_counts(normalize=True).reset_index()
25
+ commune_counts.columns = ['Commune', 'Pourcentage']
26
+ fig = px.pie(commune_counts, values='Pourcentage', names='Commune', title='Pourcentage d\'entreprises par Commune',
27
+ template='plotly_white', hole=.3)
28
+ fig.update_traces(textinfo='percent+label')
29
+ st.plotly_chart(fig)
30
+
31
  def display_rse_actions_wordcloud(df):
32
+ st.header("Nuage de mots Actions RSE")
33
 
34
  custom_stopwords = set(["d ", "des", "qui", "ainsi", "toute", "hors", "plus", "cette", "afin", "via", "d'", "sa", "dans", "ont", "avec", "aux", "ce", "chez", "ont", "cela", "la", "un", "avons", "par", "c'est", "s'est", "aussi", "leurs", "d'un", "nos", "les", "sur", "ses", "tous", "nous", "du", "notre", "de", "et", "est", "pour", "le", "une", "se", "en", "au", "à", "que", "sont", "leur", "son"])
35
  stopwords = STOPWORDS.union(custom_stopwords)
36
+
37
  text = " ".join(action for action in df['action_rse'].dropna())
38
+
39
  wordcloud = WordCloud(stopwords=stopwords, background_color="white", width=800, height=400).generate(text)
40
 
41
  fig, ax = plt.subplots()
 
51
  if not df.empty:
52
  display_companies_by_sector(df)
53
  display_company_sizes(df)
54
+ display_companies_by_commune(df)
55
  display_rse_actions_wordcloud(df)
56
 
57
  if __name__ == "__main__":