Spaces:
Running
Running
Awa Mbaye
commited on
Commit
•
693ae46
1
Parent(s):
107b807
Upload rag.py
Browse files
rag.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import PyPDF2
|
2 |
+
import spacy
|
3 |
+
from impactscoreTest import classify_actions_rse_impact_score
|
4 |
+
from ODD import classify_actions_rse_ODD
|
5 |
+
|
6 |
+
# Chargement du modèle spaCy
|
7 |
+
nlp = spacy.load("fr_core_news_sm")
|
8 |
+
|
9 |
+
# Étape 1 : Prétraitement des documents PDF
|
10 |
+
def extract_text_from_pdf(pdf_path):
|
11 |
+
text = ""
|
12 |
+
with open(pdf_path, "rb") as f:
|
13 |
+
pdf_reader = PyPDF2.PdfReader(f)
|
14 |
+
for page in pdf_reader.pages:
|
15 |
+
text += page.extract_text()
|
16 |
+
return text
|
17 |
+
|
18 |
+
# Étape 2 : Traitement du langage naturel (NLP)
|
19 |
+
def process_text(text):
|
20 |
+
doc = nlp(text)
|
21 |
+
return doc
|
22 |
+
|
23 |
+
# Étape 3 : Extraction d'informations clés
|
24 |
+
def extract_key_information(doc):
|
25 |
+
key_information = []
|
26 |
+
for entity in doc.ents:
|
27 |
+
if entity.label_ == "ORG":
|
28 |
+
name = entity.text
|
29 |
+
if name[0].lower() in ['a', 'e', 'i', 'o', 'u', 'y']: # Vérification si le nom commence par une voyelle
|
30 |
+
key_information.append(f"l'{name}")
|
31 |
+
else:
|
32 |
+
key_information.append(f"le {name}")
|
33 |
+
return key_information
|
34 |
+
|
35 |
+
# Étape 4 : Modélisation
|
36 |
+
def generate_transition_plan(key_information, impact_score_criteria, odd_criteria):
|
37 |
+
transition_plan = "Voici votre plan de transition : \n\n"
|
38 |
+
|
39 |
+
transition_plan += "Informations clés :\n"
|
40 |
+
for info in key_information:
|
41 |
+
transition_plan += f"- {info}\n"
|
42 |
+
|
43 |
+
transition_plan += "\nCritères d'impact score :\n"
|
44 |
+
for criterion, companies in impact_score_criteria.items():
|
45 |
+
transition_plan += f"- {criterion}:\n"
|
46 |
+
for company in companies:
|
47 |
+
transition_plan += f" * {company['name']} ({company['activity']}, {company['city']})\n"
|
48 |
+
|
49 |
+
transition_plan += "\nCritères ODD :\n"
|
50 |
+
for criterion, companies in odd_criteria.items():
|
51 |
+
transition_plan += f"- {criterion}:\n"
|
52 |
+
for company in companies:
|
53 |
+
transition_plan += f" * {company['name']} ({company['activity']}, {company['city']})\n"
|
54 |
+
|
55 |
+
return transition_plan
|
56 |
+
|
57 |
+
|
58 |
+
# Étape 5 : Intégration avec le RAG de Hugging Face
|
59 |
+
def generate_plan_from_pdf(pdf_path):
|
60 |
+
text = extract_text_from_pdf(pdf_path)
|
61 |
+
doc = process_text(text)
|
62 |
+
key_information = extract_key_information(doc)
|
63 |
+
impact_score_criteria = classify_actions_rse_impact_score(doc)
|
64 |
+
odd_criteria = classify_actions_rse_ODD(doc) # Utiliser la fonction ODD
|
65 |
+
transition_plan = generate_transition_plan(key_information, impact_score_criteria, odd_criteria)
|
66 |
+
return transition_plan
|
67 |
+
|
68 |
+
# Étape 6 : Test et validation
|
69 |
+
pdf_path = "trans1.pdf"
|
70 |
+
transition_plan = generate_plan_from_pdf(pdf_path)
|
71 |
+
print(transition_plan)
|