c3n7's picture
First of many
8ee3890
### 1. Imports and class setup
import gradio as gr
import os
import torch
from model import create_effnetb0_model
from timeit import default_timer as timer
from typing import Tuple, Dict
# Setup class names
with open("class_names.txt", "r") as f:
class_names = [class_name.strip() for class_name in f.readlines()]
## 2. Model and transforms preparation
effnetb0, effnetb0_transforms = create_effnetb0_model(num_classes=3)
# Load saved weights
effnetb0.load_state_dict(
torch.load(f="EfficientNet_b0.pth", map_location=torch.device("cpu"))
)
### 3. Predict function
def predict(img) -> Tuple[Dict, float]:
# Start a timer
start_time = timer()
# Transform the input image for use with EffNetB0
img = effnetb0_transforms(img).unsqueeze(
0
) # unsqueeze = add batch dimension on 0th index
# Put model into eval mode, make prediction
effnetb0.eval()
with torch.inference_mode():
# Pass transformed image through the model and turn the prediction logits into probaiblities
pred_probs = torch.softmax(effnetb0(img), dim=1)
# Create a prediction label and prediction probability dictionary
pred_labels_and_probs = {
class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))
}
# Calculate pred time
end_time = timer()
pred_time = round(end_time - start_time, 4)
# Return pred dict and pred time
return pred_labels_and_probs, pred_time
### 4. Gradio app ###
# Create title, description and article
title = "EffNet Pneumonia, by Timothy Karani"
description = "An EfficientNetB0 model for multiclass pneumonia detection"
article = "AN EFFICIENT DEEP LEARNING APPROACH FOR MULTICLASS PNEUMONIA DETECTION IN CHEST X-RAY IMAGES."
# Create example list
example_list = [["examples/" + example] for example in os.listdir("examples")]
# Create the Gradio demo
demo = gr.Interface(
fn=predict, # maps inputs to outputs
inputs=gr.Image(type="pil"),
outputs=[
gr.Label(num_top_classes=3, label="Predictions"),
gr.Number(label="Prediction time (s)"),
],
examples=example_list,
title=title,
description=description,
article=article,
)
# Launch the demo!
demo.launch()