Spaces:
Runtime error
Runtime error
### 1. Imports and class setup | |
import gradio as gr | |
import os | |
import torch | |
from model import create_effnetb0_model | |
from timeit import default_timer as timer | |
from typing import Tuple, Dict | |
# Setup class names | |
with open("class_names.txt", "r") as f: | |
class_names = [class_name.strip() for class_name in f.readlines()] | |
## 2. Model and transforms preparation | |
effnetb0, effnetb0_transforms = create_effnetb0_model(num_classes=3) | |
# Load saved weights | |
effnetb0.load_state_dict( | |
torch.load(f="EfficientNet_b0.pth", map_location=torch.device("cpu")) | |
) | |
### 3. Predict function | |
def predict(img) -> Tuple[Dict, float]: | |
# Start a timer | |
start_time = timer() | |
# Transform the input image for use with EffNetB0 | |
img = effnetb0_transforms(img).unsqueeze( | |
0 | |
) # unsqueeze = add batch dimension on 0th index | |
# Put model into eval mode, make prediction | |
effnetb0.eval() | |
with torch.inference_mode(): | |
# Pass transformed image through the model and turn the prediction logits into probaiblities | |
pred_probs = torch.softmax(effnetb0(img), dim=1) | |
# Create a prediction label and prediction probability dictionary | |
pred_labels_and_probs = { | |
class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names)) | |
} | |
# Calculate pred time | |
end_time = timer() | |
pred_time = round(end_time - start_time, 4) | |
# Return pred dict and pred time | |
return pred_labels_and_probs, pred_time | |
### 4. Gradio app ### | |
# Create title, description and article | |
title = "EffNet Pneumonia, by Timothy Karani" | |
description = "An EfficientNetB0 model for multiclass pneumonia detection" | |
article = "AN EFFICIENT DEEP LEARNING APPROACH FOR MULTICLASS PNEUMONIA DETECTION IN CHEST X-RAY IMAGES." | |
# Create example list | |
example_list = [["examples/" + example] for example in os.listdir("examples")] | |
# Create the Gradio demo | |
demo = gr.Interface( | |
fn=predict, # maps inputs to outputs | |
inputs=gr.Image(type="pil"), | |
outputs=[ | |
gr.Label(num_top_classes=3, label="Predictions"), | |
gr.Number(label="Prediction time (s)"), | |
], | |
examples=example_list, | |
title=title, | |
description=description, | |
article=article, | |
) | |
# Launch the demo! | |
demo.launch() | |