import os, json, requests, random, runpod import torch from diffusers import AutoencoderKLCogVideoX, CogVideoXImageToVideoPipeline, CogVideoXTransformer3DModel from diffusers.utils import export_to_video, load_image from transformers import T5EncoderModel, T5Tokenizer with torch.inference_mode(): model_id = "/content/model" transformer = CogVideoXTransformer3DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.float16) text_encoder = T5EncoderModel.from_pretrained(model_id, subfolder="text_encoder", torch_dtype=torch.float16) vae = AutoencoderKLCogVideoX.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float16) tokenizer = T5Tokenizer.from_pretrained(model_id, subfolder="tokenizer") pipe = CogVideoXImageToVideoPipeline.from_pretrained(model_id, tokenizer=tokenizer, text_encoder=text_encoder, transformer=transformer, vae=vae, torch_dtype=torch.float16) lora_path = "/content/lora" lora_rank = 256 pipe.load_lora_weights(lora_path, weight_name="orbit_left_lora_weights.safetensors", adapter_name="orbit_left_lora_weights") pipe.fuse_lora(lora_scale=1 / lora_rank) pipe.to("cuda") def download_file(url, save_dir, file_name): os.makedirs(save_dir, exist_ok=True) original_file_name = url.split('/')[-1] _, original_file_extension = os.path.splitext(original_file_name) file_path = os.path.join(save_dir, file_name + original_file_extension) response = requests.get(url) response.raise_for_status() with open(file_path, 'wb') as file: file.write(response.content) return file_path @torch.inference_mode() def generate(input): values = input["input"] input_image = values['input_image_check'] input_image = download_file(url=input_image, save_dir='/content/input', file_name='input_image_tost') prompt = values['prompt'] # guidance_scale = values['guidance_scale'] # use_dynamic_cfg = values['use_dynamic_cfg'] # num_inference_steps = values['num_inference_steps'] # fps = values['fps'] guidance_scale = 6 use_dynamic_cfg = True num_inference_steps = 50 fps = 8 image = load_image(input_image) video = pipe(image=image, prompt=prompt, guidance_scale=guidance_scale, use_dynamic_cfg=use_dynamic_cfg, num_inference_steps=num_inference_steps).frames[0] export_to_video(video, "/content/cogvideox_5b_i2v_dimensionx_tost.mp4", fps=fps) result = "/content/cogvideox_5b_i2v_dimensionx_tost.mp4" try: notify_uri = values['notify_uri'] del values['notify_uri'] notify_token = values['notify_token'] del values['notify_token'] discord_id = values['discord_id'] del values['discord_id'] if(discord_id == "discord_id"): discord_id = os.getenv('com_camenduru_discord_id') discord_channel = values['discord_channel'] del values['discord_channel'] if(discord_channel == "discord_channel"): discord_channel = os.getenv('com_camenduru_discord_channel') discord_token = values['discord_token'] del values['discord_token'] if(discord_token == "discord_token"): discord_token = os.getenv('com_camenduru_discord_token') job_id = values['job_id'] del values['job_id'] default_filename = os.path.basename(result) with open(result, "rb") as file: files = {default_filename: file.read()} payload = {"content": f"{json.dumps(values)} <@{discord_id}>"} response = requests.post( f"https://discord.com/api/v9/channels/{discord_channel}/messages", data=payload, headers={"Authorization": f"Bot {discord_token}"}, files=files ) response.raise_for_status() result_url = response.json()['attachments'][0]['url'] notify_payload = {"jobId": job_id, "result": result_url, "status": "DONE"} web_notify_uri = os.getenv('com_camenduru_web_notify_uri') web_notify_token = os.getenv('com_camenduru_web_notify_token') if(notify_uri == "notify_uri"): requests.post(web_notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token}) else: requests.post(web_notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token}) requests.post(notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": notify_token}) return {"jobId": job_id, "result": result_url, "status": "DONE"} except Exception as e: error_payload = {"jobId": job_id, "status": "FAILED"} try: if(notify_uri == "notify_uri"): requests.post(web_notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token}) else: requests.post(web_notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token}) requests.post(notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": notify_token}) except: pass return {"jobId": job_id, "result": f"FAILED: {str(e)}", "status": "FAILED"} finally: if os.path.exists(result): os.remove(result) if os.path.exists(input_image): os.remove(input_image) runpod.serverless.start({"handler": generate})